![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 857 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 875 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 216 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 837 |
This theorem is referenced by: biortn 923 pm5.55 933 pm5.61 985 pm5.75 1015 3bior1fd 1586 3bior2fd 1588 euor 2661 euor2 2663 eueq3 3533 unineq 4026 ifor 4274 difprsnss 4465 eqsn 4495 pr1eqbg 4521 disjprg 4782 disjxun 4784 opthwiener 5107 opthprc 5307 swoord1 7927 brwdomn0 8630 fpwwe2lem13 9666 ne0gt0 10344 xrinfmss 12345 sumsplit 14707 sadadd2lem2 15380 coprm 15630 vdwlem11 15902 lvecvscan 19324 lvecvscan2 19325 mplcoe1 19680 mplcoe5 19683 maducoeval2 20664 xrsxmet 22832 itg2split 23736 plydiveu 24273 quotcan 24284 coseq1 24495 angrtmuld 24759 leibpilem2 24889 leibpi 24890 wilthlem2 25016 tgldimor 25618 tgcolg 25670 axcontlem7 26071 nb3grprlem2 26506 eupth2lem2 27399 eupth2lem3lem6 27413 nmlnogt0 27992 hvmulcan 28269 hvmulcan2 28270 disjunsn 29745 xrdifh 29882 bj-biorfi 32905 bj-snmoore 33400 itgaddnclem2 33801 elpadd0 35617 or3or 38845 |
Copyright terms: Public domain | W3C validator |