Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvsum Structured version   Visualization version   GIF version

Theorem binomcxplemdvsum 38871
Description: Lemma for binomcxp 38873. The derivative of the generalized sum in binomcxplemnn0 38865. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
binomcxplem.p 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
Assertion
Ref Expression
binomcxplemdvsum (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Distinct variable groups:   𝑘,𝑏,𝐹   𝜑,𝑏,𝑘   𝑟,𝑏,𝑘,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑃(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑟,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗)

Proof of Theorem binomcxplemdvsum
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxplem.p . . . . 5 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
3 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
4 nfcv 2793 . . . . . . . 8 𝑏abs
5 nfcv 2793 . . . . . . . . 9 𝑏0
6 nfcv 2793 . . . . . . . . 9 𝑏[,)
7 binomcxplem.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
8 nfcv 2793 . . . . . . . . . . . . . 14 𝑏 +
9 nfmpt1 4780 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
101, 9nfcxfr 2791 . . . . . . . . . . . . . . 15 𝑏𝑆
11 nfcv 2793 . . . . . . . . . . . . . . 15 𝑏𝑟
1210, 11nffv 6236 . . . . . . . . . . . . . 14 𝑏(𝑆𝑟)
135, 8, 12nfseq 12851 . . . . . . . . . . . . 13 𝑏seq0( + , (𝑆𝑟))
1413nfel1 2808 . . . . . . . . . . . 12 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
15 nfcv 2793 . . . . . . . . . . . 12 𝑏
1614, 15nfrab 3153 . . . . . . . . . . 11 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
17 nfcv 2793 . . . . . . . . . . 11 𝑏*
18 nfcv 2793 . . . . . . . . . . 11 𝑏 <
1916, 17, 18nfsup 8398 . . . . . . . . . 10 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
207, 19nfcxfr 2791 . . . . . . . . 9 𝑏𝑅
215, 6, 20nfov 6716 . . . . . . . 8 𝑏(0[,)𝑅)
224, 21nfima 5509 . . . . . . 7 𝑏(abs “ (0[,)𝑅))
233, 22nfcxfr 2791 . . . . . 6 𝑏𝐷
24 nfcv 2793 . . . . . 6 𝑦𝐷
25 nfcv 2793 . . . . . 6 𝑦Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)
26 nfcv 2793 . . . . . . 7 𝑏0
27 nfcv 2793 . . . . . . . . 9 𝑏𝑦
2810, 27nffv 6236 . . . . . . . 8 𝑏(𝑆𝑦)
29 nfcv 2793 . . . . . . . 8 𝑏𝑚
3028, 29nffv 6236 . . . . . . 7 𝑏((𝑆𝑦)‘𝑚)
3126, 30nfsum 14465 . . . . . 6 𝑏Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
32 simpl 472 . . . . . . . . . 10 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → 𝑏 = 𝑦)
3332fveq2d 6233 . . . . . . . . 9 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → (𝑆𝑏) = (𝑆𝑦))
3433fveq1d 6231 . . . . . . . 8 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → ((𝑆𝑏)‘𝑘) = ((𝑆𝑦)‘𝑘))
3534sumeq2dv 14477 . . . . . . 7 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘))
36 nfcv 2793 . . . . . . . 8 𝑚((𝑆𝑦)‘𝑘)
37 nfcv 2793 . . . . . . . . . . . 12 𝑘
38 nfmpt1 4780 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))
3937, 38nfmpt 4779 . . . . . . . . . . 11 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
401, 39nfcxfr 2791 . . . . . . . . . 10 𝑘𝑆
41 nfcv 2793 . . . . . . . . . 10 𝑘𝑦
4240, 41nffv 6236 . . . . . . . . 9 𝑘(𝑆𝑦)
43 nfcv 2793 . . . . . . . . 9 𝑘𝑚
4442, 43nffv 6236 . . . . . . . 8 𝑘((𝑆𝑦)‘𝑚)
45 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑆𝑦)‘𝑘) = ((𝑆𝑦)‘𝑚))
4636, 44, 45cbvsumi 14471 . . . . . . 7 Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
4735, 46syl6eq 2701 . . . . . 6 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
4823, 24, 25, 31, 47cbvmptf 4781 . . . . 5 (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)) = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
492, 48eqtri 2673 . . . 4 𝑃 = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
50 ovexd 6720 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V)
51 binomcxplem.f . . . . . 6 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
5251a1i 11 . . . . 5 (𝜑𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
5351a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
54 simpr 476 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
5554oveq2d 6706 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
56 simpr 476 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
57 binomcxp.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
5857adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5958, 56bcccl 38855 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
6053, 55, 56, 59fvmptd 6327 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
6160, 59eqeltrd 2730 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
6250, 52, 61fmpt2d 6433 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
63 nfcv 2793 . . . . . . 7 𝑟
64 nfcv 2793 . . . . . . 7 𝑧
65 nfv 1883 . . . . . . 7 𝑧seq0( + , (𝑆𝑟)) ∈ dom ⇝
66 nfcv 2793 . . . . . . . . 9 𝑟0
67 nfcv 2793 . . . . . . . . 9 𝑟 +
68 nfcv 2793 . . . . . . . . . . 11 𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
691, 68nfcxfr 2791 . . . . . . . . . 10 𝑟𝑆
70 nfcv 2793 . . . . . . . . . 10 𝑟𝑧
7169, 70nffv 6236 . . . . . . . . 9 𝑟(𝑆𝑧)
7266, 67, 71nfseq 12851 . . . . . . . 8 𝑟seq0( + , (𝑆𝑧))
7372nfel1 2808 . . . . . . 7 𝑟seq0( + , (𝑆𝑧)) ∈ dom ⇝
74 fveq2 6229 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑆𝑟) = (𝑆𝑧))
7574seqeq3d 12849 . . . . . . . 8 (𝑟 = 𝑧 → seq0( + , (𝑆𝑟)) = seq0( + , (𝑆𝑧)))
7675eleq1d 2715 . . . . . . 7 (𝑟 = 𝑧 → (seq0( + , (𝑆𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆𝑧)) ∈ dom ⇝ ))
7763, 64, 65, 73, 76cbvrab 3229 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }
7877supeq1i 8394 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
797, 78eqtri 2673 . . . 4 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
801fveq1i 6230 . . . . . . . . . . 11 (𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
81 seqeq3 12846 . . . . . . . . . . 11 ((𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
8280, 81ax-mp 5 . . . . . . . . . 10 seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
8382eleq1i 2721 . . . . . . . . 9 (seq0( + , (𝑆𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
8483rabbii 3216 . . . . . . . 8 {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
8584supeq1i 8394 . . . . . . 7 sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
867, 78, 853eqtrri 2678 . . . . . 6 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = 𝑅
8786eleq1i 2721 . . . . 5 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ 𝑅 ∈ ℝ)
8886oveq2i 6701 . . . . . 6 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + 𝑅)
8988oveq1i 6700 . . . . 5 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + 𝑅) / 2)
90 eqid 2651 . . . . 5 ((abs‘𝑥) + 1) = ((abs‘𝑥) + 1)
9187, 89, 90ifbieq12i 4145 . . . 4 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1))
92 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤𝑘) = (𝑏𝑘))
9392oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → ((𝐹𝑘) · (𝑤𝑘)) = ((𝐹𝑘) · (𝑏𝑘)))
9493mpteq2dv 4778 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9594cbvmptv 4783 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9695fveq1i 6230 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
97 seqeq3 12846 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
9896, 97ax-mp 5 . . . . . . . . . . . 12 seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
9998eleq1i 2721 . . . . . . . . . . 11 (seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
10099rabbii 3216 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
101100supeq1i 8394 . . . . . . . . 9 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
102101eleq1i 2721 . . . . . . . 8 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ)
103101oveq2i 6701 . . . . . . . . 9 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ))
104103oveq1i 6700 . . . . . . . 8 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2)
105102, 104, 90ifbieq12i 4145 . . . . . . 7 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))
106105oveq2i 6701 . . . . . 6 ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)))
107106oveq1i 6700 . . . . 5 (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)
108107oveq2i 6701 . . . 4 (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2))
1091, 49, 62, 79, 3, 91, 108pserdv2 24229 . . 3 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
110 cnvimass 5520 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
1113, 110eqsstri 3668 . . . . . . 7 𝐷 ⊆ dom abs
112 absf 14121 . . . . . . . 8 abs:ℂ⟶ℝ
113112fdmi 6090 . . . . . . 7 dom abs = ℂ
114111, 113sseqtri 3670 . . . . . 6 𝐷 ⊆ ℂ
115114sseli 3632 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
116 binomcxplem.e . . . . . . . . . 10 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
117116a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
118 simplr 807 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦)
119118oveq1d 6705 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1)))
120119oveq2d 6706 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))))
121120mpteq2dva 4777 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
122 simpr 476 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
123 nnex 11064 . . . . . . . . . . 11 ℕ ∈ V
124123mptex 6527 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V
125124a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V)
126117, 121, 122, 125fvmptd 6327 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
127126adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
128 simpr 476 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
129128fveq2d 6233 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
130128, 129oveq12d 6708 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹𝑘)) = (𝑛 · (𝐹𝑛)))
131128oveq1d 6705 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1))
132131oveq2d 6706 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1)))
133130, 132oveq12d 6708 . . . . . . 7 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
134 simpr 476 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
135 ovexd 6720 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
136127, 133, 134, 135fvmptd 6327 . . . . . 6 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
137136sumeq2dv 14477 . . . . 5 ((𝜑𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
138115, 137sylan2 490 . . . 4 ((𝜑𝑦𝐷) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
139138mpteq2dva 4777 . . 3 (𝜑 → (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
140109, 139eqtr4d 2688 . 2 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)))
141 nfcv 2793 . . . 4 𝑏
142 nfmpt1 4780 . . . . . . 7 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
143116, 142nfcxfr 2791 . . . . . 6 𝑏𝐸
144143, 27nffv 6236 . . . . 5 𝑏(𝐸𝑦)
145 nfcv 2793 . . . . 5 𝑏𝑛
146144, 145nffv 6236 . . . 4 𝑏((𝐸𝑦)‘𝑛)
147141, 146nfsum 14465 . . 3 𝑏Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)
148 nfcv 2793 . . 3 𝑦Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
149 simpl 472 . . . . . . 7 ((𝑦 = 𝑏𝑛 ∈ ℕ) → 𝑦 = 𝑏)
150149fveq2d 6233 . . . . . 6 ((𝑦 = 𝑏𝑛 ∈ ℕ) → (𝐸𝑦) = (𝐸𝑏))
151150fveq1d 6231 . . . . 5 ((𝑦 = 𝑏𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝐸𝑏)‘𝑛))
152151sumeq2dv 14477 . . . 4 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛))
153 nfmpt1 4780 . . . . . . . . 9 𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))
15437, 153nfmpt 4779 . . . . . . . 8 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
155116, 154nfcxfr 2791 . . . . . . 7 𝑘𝐸
156 nfcv 2793 . . . . . . 7 𝑘𝑏
157155, 156nffv 6236 . . . . . 6 𝑘(𝐸𝑏)
158 nfcv 2793 . . . . . 6 𝑘𝑛
159157, 158nffv 6236 . . . . 5 𝑘((𝐸𝑏)‘𝑛)
160 nfcv 2793 . . . . 5 𝑛((𝐸𝑏)‘𝑘)
161 fveq2 6229 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑏)‘𝑛) = ((𝐸𝑏)‘𝑘))
162159, 160, 161cbvsumi 14471 . . . 4 Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
163152, 162syl6eq 2701 . . 3 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
16424, 23, 147, 148, 163cbvmptf 4781 . 2 (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
165140, 164syl6eq 2701 1 (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  ifcif 4119   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  cima 5146  ccom 5147  cfv 5926  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  *cxr 10111   < clt 10112  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  +crp 11870  [,)cico 12215  seqcseq 12841  cexp 12900  abscabs 14018  cli 14259  Σcsu 14460  ballcbl 19781   D cdv 23672  C𝑐cbcc 38852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-fallfac 14782  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-ulm 24176  df-bcc 38853
This theorem is referenced by:  binomcxplemnotnn0  38872
  Copyright terms: Public domain W3C validator