MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom Structured version   Visualization version   GIF version

Theorem binom 14606
Description: The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 14605. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . . 6 (𝑥 = 0 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑0))
2 oveq2 6698 . . . . . . 7 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 6697 . . . . . . . . 9 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq2d 6706 . . . . . . . . . 10 (𝑥 = 0 → (𝐴↑(𝑥𝑘)) = (𝐴↑(0 − 𝑘)))
65oveq1d 6705 . . . . . . . . 9 (𝑥 = 0 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))
73, 6oveq12d 6708 . . . . . . . 8 (𝑥 = 0 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
87adantr 480 . . . . . . 7 ((𝑥 = 0 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
92, 8sumeq12dv 14481 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
101, 9eqeq12d 2666 . . . . 5 (𝑥 = 0 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))))
1110imbi2d 329 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))))
12 oveq2 6698 . . . . . 6 (𝑥 = 𝑛 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑛))
13 oveq2 6698 . . . . . . 7 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq2d 6706 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑛𝑘)))
1716oveq1d 6705 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))
1814, 17oveq12d 6708 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
1918adantr 480 . . . . . . 7 ((𝑥 = 𝑛𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2013, 19sumeq12dv 14481 . . . . . 6 (𝑥 = 𝑛 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2112, 20eqeq12d 2666 . . . . 5 (𝑥 = 𝑛 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))))
2221imbi2d 329 . . . 4 (𝑥 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))))
23 oveq2 6698 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑(𝑛 + 1)))
24 oveq2 6698 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 6697 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 6697 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq2d 6706 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝐴↑(𝑥𝑘)) = (𝐴↑((𝑛 + 1) − 𝑘)))
2827oveq1d 6705 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))
2925, 28oveq12d 6708 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3029adantr 480 . . . . . . 7 ((𝑥 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3124, 30sumeq12dv 14481 . . . . . 6 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3223, 31eqeq12d 2666 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))))
3332imbi2d 329 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
34 oveq2 6698 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑁))
35 oveq2 6698 . . . . . . 7 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq2d 6706 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑁𝑘)))
3938oveq1d 6705 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))
4036, 39oveq12d 6708 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4140adantr 480 . . . . . . 7 ((𝑥 = 𝑁𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4235, 41sumeq12dv 14481 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4334, 42eqeq12d 2666 . . . . 5 (𝑥 = 𝑁 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
4443imbi2d 329 . . . 4 (𝑥 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))))
45 exp0 12904 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
46 exp0 12904 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
4745, 46oveqan12d 6709 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
48 1t1e1 11213 . . . . . . . 8 (1 · 1) = 1
4947, 48syl6eq 2701 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
5049oveq2d 6706 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = (1 · 1))
5150, 48syl6eq 2701 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = 1)
52 0z 11426 . . . . . 6 0 ∈ ℤ
53 ax-1cn 10032 . . . . . . 7 1 ∈ ℂ
5451, 53syl6eqel 2738 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ)
55 oveq2 6698 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
56 0nn0 11345 . . . . . . . . . 10 0 ∈ ℕ0
57 bcn0 13137 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
5856, 57ax-mp 5 . . . . . . . . 9 (0C0) = 1
5955, 58syl6eq 2701 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
60 oveq2 6698 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
61 0m0e0 11168 . . . . . . . . . . 11 (0 − 0) = 0
6260, 61syl6eq 2701 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6362oveq2d 6706 . . . . . . . . 9 (𝑘 = 0 → (𝐴↑(0 − 𝑘)) = (𝐴↑0))
64 oveq2 6698 . . . . . . . . 9 (𝑘 = 0 → (𝐵𝑘) = (𝐵↑0))
6563, 64oveq12d 6708 . . . . . . . 8 (𝑘 = 0 → ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)) = ((𝐴↑0) · (𝐵↑0)))
6659, 65oveq12d 6708 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6766fsum1 14520 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6852, 54, 67sylancr 696 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
69 addcl 10056 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
7069exp0d 13042 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = 1)
7151, 68, 703eqtr4rd 2696 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
72 simprl 809 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
73 simprr 811 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
74 simpl 472 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
75 id 22 . . . . . . 7 (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
7672, 73, 74, 75binomlem 14605 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
7776exp31 629 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7877a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7911, 22, 33, 44, 71, 78nn0ind 11510 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
8079impcom 445 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
81803impa 1278 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  0cn0 11330  cz 11415  ...cfz 12364  cexp 12900  Ccbc 13129  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461
This theorem is referenced by:  binom1p  14607  efaddlem  14867  basellem3  24854  jm2.22  37879  binomcxplemnn0  38865  altgsumbc  42455
  Copyright terms: Public domain W3C validator