![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 503. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 653 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1102 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: rmoi 3671 brelrng 5510 div2sub 11062 nn0p1elfzo 12725 ssfzo12 12775 modltm1p1mod 12936 abssubge0 14286 qredeu 15594 abvne0 19049 slesolinvbi 20709 basgen2 21015 fcfval 22058 nmne0 22644 ovolfsf 23460 lgssq 25282 lgssq2 25283 colinearalg 26010 usgr0v 26353 frgr0vb 27437 nv1 27860 adjeq 29124 frrlem4 32110 areacirc 33836 fvopabf4g 33846 exidreslem 34007 hgmapvvlem3 37737 iocmbl 38318 iunconnlem2 39688 ssfz12 41852 m1modmmod 42844 |
Copyright terms: Public domain | W3C validator |