Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1582
 Description: Infer implication from a logical equivalence. Similar to biimpar 503. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 653 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1102 1 ((𝜑𝜓𝜃) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074 This theorem is referenced by:  rmoi  3671  brelrng  5510  div2sub  11062  nn0p1elfzo  12725  ssfzo12  12775  modltm1p1mod  12936  abssubge0  14286  qredeu  15594  abvne0  19049  slesolinvbi  20709  basgen2  21015  fcfval  22058  nmne0  22644  ovolfsf  23460  lgssq  25282  lgssq2  25283  colinearalg  26010  usgr0v  26353  frgr0vb  27437  nv1  27860  adjeq  29124  frrlem4  32110  areacirc  33836  fvopabf4g  33846  exidreslem  34007  hgmapvvlem3  37737  iocmbl  38318  iunconnlem2  39688  ssfz12  41852  m1modmmod  42844
 Copyright terms: Public domain W3C validator