![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . 2 ⊢ 𝜑 | |
2 | ibar 524 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: mpbiran 973 cases 1011 truan 1541 2sb5rf 2479 rexv 3251 reuv 3252 rmov 3253 rabab 3254 euxfr 3425 euind 3426 ddif 3775 nssinpss 3889 nsspssun 3890 vss 4045 difsnpss 4370 sspr 4398 sstp 4399 disjprg 4680 mptv 4784 reusv2lem5 4903 oteqex2 4992 dfid4 5055 intirr 5549 xpcan 5605 fvopab6 6350 fnressn 6465 riotav 6656 mpt2v 6792 sorpss 6984 opabn1stprc 7272 fparlem2 7323 fnsuppres 7367 brtpos0 7404 sup0riota 8412 genpass 9869 nnwos 11793 hashbclem 13274 ccatlcan 13518 clim0 14281 gcd0id 15287 pjfval2 20101 mat1dimbas 20326 pmatcollpw2lem 20630 isbasis3g 20801 opnssneib 20967 ssidcn 21107 qtopcld 21564 mdegleb 23869 vieta1 24112 lgsne0 25105 axpasch 25866 0wlk 27094 0clwlk 27108 shlesb1i 28373 chnlei 28472 pjneli 28710 cvexchlem 29355 dmdbr5ati 29409 elimifd 29488 lmxrge0 30126 cntnevol 30419 bnj110 31054 elpotr 31810 dfbigcup2 32131 bj-cleljustab 32972 bj-rexvwv 32991 bj-rababwv 32992 finxpreclem4 33361 wl-cases2-dnf 33425 cnambfre 33588 triantru3 34143 lub0N 34794 glb0N 34798 cvlsupr3 34949 isdomn3 38099 ifpdfor2 38122 ifpdfor 38126 ifpim1 38130 ifpid2 38132 ifpim2 38133 ifpid2g 38155 ifpid1g 38156 ifpim23g 38157 ifpim1g 38163 ifpimimb 38166 rp-isfinite6 38181 rababg 38196 relnonrel 38210 rp-imass 38382 dffrege115 38589 dfnelbr2 41614 |
Copyright terms: Public domain | W3C validator |