![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 523 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: ifptru 1043 cad1 1595 raldifeq 4092 posn 5221 elrnmpt1 5406 dfres3 5433 fliftf 6605 eroveu 7885 ixpfi2 8305 funsnfsupp 8340 elfi2 8361 dffi3 8378 cfss 9125 wunex2 9598 nn2ge 11083 nnle1eq1 11086 nn0le0eq0 11359 ixxun 12229 ioopos 12288 injresinj 12629 hashle00 13226 prprrab 13293 xpcogend 13759 cnpart 14024 fz1f1o 14485 nndivdvds 15036 dvdsmultr2 15068 bitsmod 15205 sadadd 15236 sadass 15240 smuval2 15251 smumul 15262 pcmpt 15643 pcmpt2 15644 prmreclem2 15668 prmreclem5 15671 ramcl 15780 mrcidb2 16325 acsfn 16367 fncnvimaeqv 16807 latleeqj1 17110 pgpssslw 18075 subgdmdprd 18479 lssle0 18998 islpir2 19299 islinds3 20221 iscld4 20917 discld 20941 cncnpi 21130 cnprest2 21142 lmss 21150 isconn2 21265 dfconn2 21270 subislly 21332 lly1stc 21347 elptr 21424 txcn 21477 hauseqlcld 21497 xkoinjcn 21538 tsmsres 21994 isxmet2d 22179 xmetgt0 22210 prdsxmetlem 22220 imasdsf1olem 22225 xblss2 22254 stdbdbl 22369 prdsxmslem2 22381 xrtgioo 22656 xrsxmet 22659 cncffvrn 22748 cnmpt2pc 22774 elpi1i 22892 minveclem7 23252 elovolmr 23290 ismbf 23442 mbfmax 23461 itg1val2 23496 mbfi1fseqlem4 23530 itgresr 23590 iblrelem 23602 iblpos 23604 itgfsum 23638 rlimcnp 24737 rlimcnp2 24738 chpchtsum 24989 dchreq 25028 lgsneg 25091 lgsdilem 25094 lgsquadlem2 25151 2lgslem1a 25161 lmiinv 25729 isspthonpth 26701 s3wwlks2on 26922 clwlkclwwlk 26968 clwwlknonel 27070 clwwlknun 27087 clwwlknunOLD 27091 dfconngr1 27166 eupth2lem2 27197 frgr3vlem2 27254 numclwwlk2lem1 27356 numclwwlk2lem1OLD 27363 minvecolem7 27867 shle0 28429 mdsl2bi 29310 dmdbr5ati 29409 cdj3lem1 29421 eulerpartlemr 30564 subfacp1lem3 31290 hfext 32415 bj-issetwt 32984 poimirlem25 33564 poimirlem26 33565 poimirlem27 33566 mblfinlem3 33578 mblfinlem4 33579 mbfresfi 33586 itg2addnclem 33591 itg2addnc 33594 cover2 33638 heiborlem10 33749 opelresALTV 34172 ople0 34792 atlle0 34910 cdlemg10c 36244 cdlemg33c 36313 hdmap14lem13 37489 mrefg3 37588 acsfn1p 38086 radcnvrat 38830 funressnfv 41529 dfdfat2 41532 2ffzoeq 41663 |
Copyright terms: Public domain | W3C validator |