Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bi3impa Structured version   Visualization version   GIF version

Theorem bi3impa 39190
Description: Similar to 3impa 1101 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
Hypothesis
Ref Expression
bi3impa.1 (((𝜑𝜓) ∧ 𝜒) ↔ 𝜃)
Assertion
Ref Expression
bi3impa ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem bi3impa
StepHypRef Expression
1 bi3impa.1 . . 3 (((𝜑𝜓) ∧ 𝜒) ↔ 𝜃)
21biimpi 206 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
323impa 1101 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-3an 1074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator