Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem4 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem4 42021
 Description: Lemma 4 for bgoldbtbnd 42022. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
Assertion
Ref Expression
bgoldbtbndlem4 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝐷,𝑝,𝑞,𝑟   𝐹,𝑝,𝑞,𝑟   𝐼,𝑝,𝑞,𝑟   𝑛,𝑁   𝑋,𝑝,𝑞,𝑟   𝜑,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛,𝑟,𝑞,𝑝)   𝑁(𝑟,𝑞,𝑝)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpll 805 . . 3 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝜑)
2 simpr 476 . . 3 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝑋 ∈ Odd )
3 simplr 807 . . 3 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝐼 ∈ (1..^𝐷))
4 bgoldbtbnd.m . . . 4 (𝜑𝑀 ∈ (ℤ11))
5 bgoldbtbnd.n . . . 4 (𝜑𝑁 ∈ (ℤ11))
6 bgoldbtbnd.b . . . 4 (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
7 bgoldbtbnd.d . . . 4 (𝜑𝐷 ∈ (ℤ‘3))
8 bgoldbtbnd.f . . . 4 (𝜑𝐹 ∈ (RePart‘𝐷))
9 bgoldbtbnd.i . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
10 bgoldbtbnd.0 . . . 4 (𝜑 → (𝐹‘0) = 7)
11 bgoldbtbnd.1 . . . 4 (𝜑 → (𝐹‘1) = 13)
12 bgoldbtbnd.l . . . 4 (𝜑𝑀 < (𝐹𝐷))
13 eqid 2651 . . . 4 (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑋 − (𝐹‘(𝐼 − 1)))
144, 5, 6, 7, 8, 9, 10, 11, 12, 13bgoldbtbndlem2 42019 . . 3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1))))))
151, 2, 3, 14syl3anc 1366 . 2 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1))))))
16 breq2 4689 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
17 breq1 4688 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑛 < 𝑁𝑚 < 𝑁))
1816, 17anbi12d 747 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 < 𝑁) ↔ (4 < 𝑚𝑚 < 𝑁)))
19 eleq1 2718 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
2018, 19imbi12d 333 . . . . . . . . . 10 (𝑛 = 𝑚 → (((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven )))
2120cbvralv 3201 . . . . . . . . 9 (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even ((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ))
22 breq2 4689 . . . . . . . . . . . 12 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (4 < 𝑚 ↔ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))))
23 breq1 4688 . . . . . . . . . . . 12 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (𝑚 < 𝑁 ↔ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
2422, 23anbi12d 747 . . . . . . . . . . 11 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → ((4 < 𝑚𝑚 < 𝑁) ↔ (4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
25 eleq1 2718 . . . . . . . . . . 11 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (𝑚 ∈ GoldbachEven ↔ (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ))
2624, 25imbi12d 333 . . . . . . . . . 10 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) ↔ ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven )))
2726rspcv 3336 . . . . . . . . 9 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∀𝑚 ∈ Even ((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) → ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven )))
2821, 27syl5bi 232 . . . . . . . 8 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven )))
29 id 22 . . . . . . . . . . 11 (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ))
30 isgbe 41964 . . . . . . . . . . . . 13 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ↔ ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))))
31 simp1 1081 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝑖) ∈ (ℙ ∖ {2}))
3231ralimi 2981 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}))
33 elfzo1 12557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐼 < 𝐷))
34 nnm1nn0 11372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
35343ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐼 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐼 < 𝐷) → (𝐼 − 1) ∈ ℕ0)
3633, 35sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ ℕ0)
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ ℕ0))
38 eluzge3nn 11768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ ℕ))
40 elfzo2 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
41 eluzelre 11736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐼 ∈ (ℤ‘1) → 𝐼 ∈ ℝ)
4241adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → 𝐼 ∈ ℝ)
4342ltm1d 10994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) < 𝐼)
44 1red 10093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → 1 ∈ ℝ)
4542, 44resubcld 10496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) ∈ ℝ)
46 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℝ)
48 lttr 10152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐼 − 1) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (((𝐼 − 1) < 𝐼𝐼 < 𝐷) → (𝐼 − 1) < 𝐷))
4945, 42, 47, 48syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (((𝐼 − 1) < 𝐼𝐼 < 𝐷) → (𝐼 − 1) < 𝐷))
5043, 49mpand 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (𝐼 < 𝐷 → (𝐼 − 1) < 𝐷))
51503impia 1280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → (𝐼 − 1) < 𝐷)
5240, 51sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) < 𝐷)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) < 𝐷))
5437, 39, 533jcad 1262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷)))
557, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷)))
5655imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷))
57 elfzo0 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 − 1) ∈ (0..^𝐷) ↔ ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷))
5856, 57sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐼 − 1) ∈ (0..^𝐷))
59 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 = (𝐼 − 1) → (𝐹𝑖) = (𝐹‘(𝐼 − 1)))
6059eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 = (𝐼 − 1) → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
6160rspcv 3336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 − 1) ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
6258, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
63 eldifi 3765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
6462, 63syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ))
6564expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (1..^𝐷) → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)))
6665com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ)))
6732, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ)))
689, 67mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ))
7069imp 444 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
7170ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
7271ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
73 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = (𝐹‘(𝐼 − 1)) → (𝑟 ∈ Odd ↔ (𝐹‘(𝐼 − 1)) ∈ Odd ))
74733anbi3d 1445 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝐹‘(𝐼 − 1)) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd )))
75 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = (𝐹‘(𝐼 − 1)) → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
7675eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝐹‘(𝐼 − 1)) → (𝑋 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1)))))
7774, 76anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = (𝐹‘(𝐼 − 1)) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
7877adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) ∧ 𝑟 = (𝐹‘(𝐼 − 1))) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
79 oddprmALTV 41923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )
8062, 79syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd ))
8180expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^𝐷) → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )))
8281com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd )))
8332, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd )))
849, 83mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd ))
8584adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd ))
8685imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 − 1)) ∈ Odd )
8786ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹‘(𝐼 − 1)) ∈ Odd )
88 3simpa 1078 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))
8987, 88anim12ci 590 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
90 df-3an 1056 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
9189, 90sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
92 oddz 41869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
9392zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑋 ∈ Odd → 𝑋 ∈ ℂ)
9493adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝑋 ∈ ℂ)
9594ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑋 ∈ ℂ)
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑋 ∈ ℂ)
97 prmz 15436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℤ)
9897zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9963, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10062, 99syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℂ))
101100expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐼 ∈ (1..^𝐷) → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℂ)))
102101com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ)))
10332, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ)))
1049, 103mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ))
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ))
106105imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
107106ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10996, 108npcand 10434 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝑋 − (𝐹‘(𝐼 − 1))) + (𝐹‘(𝐼 − 1))) = 𝑋)
110 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞) → ((𝑋 − (𝐹‘(𝐼 − 1))) + (𝐹‘(𝐼 − 1))) = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
111109, 110sylan9req 2706 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
112111exp31 629 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
113112com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞) → (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
1141133impia 1280 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1)))))
115114impcom 445 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
11691, 115jca 553 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1)))))
11772, 78, 116rspcedvd 3348 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))
118117ex 449 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
119118reximdva 3046 . . . . . . . . . . . . . . . . 17 ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
120119reximdva 3046 . . . . . . . . . . . . . . . 16 (((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
121120exp41 637 . . . . . . . . . . . . . . 15 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
122121com25 99 . . . . . . . . . . . . . 14 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
123122imp 444 . . . . . . . . . . . . 13 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))
12430, 123sylbi 207 . . . . . . . . . . . 12 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))
125124a1d 25 . . . . . . . . . . 11 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
12629, 125syl6com 37 . . . . . . . . . 10 ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
127126ancoms 468 . . . . . . . . 9 (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
128127com13 88 . . . . . . . 8 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
12928, 128syld 47 . . . . . . 7 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
130129com23 86 . . . . . 6 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
1311303impib 1281 . . . . 5 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
132131com15 101 . . . 4 (𝜑 → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
1336, 132mpd 15 . . 3 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))
134133imp31 447 . 2 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
13515, 134syld 47 1 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ∖ cdif 3604  {csn 4210   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  2c2 11108  3c3 11109  4c4 11110  7c7 11113  ℕ0cn0 11330  ℤcz 11415  ;cdc 11531  ℤ≥cuz 11725  [,)cico 12215  ..^cfzo 12504  ℙcprime 15432  RePartciccp 41674   Even ceven 41862   Odd codd 41863   GoldbachEven cgbe 41958 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433  df-iccp 41675  df-even 41864  df-odd 41865  df-gbe 41961 This theorem is referenced by:  bgoldbtbnd  42022
 Copyright terms: Public domain W3C validator