Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem3 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem3 42205
Description: Lemma 3 for bgoldbtbnd 42207. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
bgoldbtbndlem3.s 𝑆 = (𝑋 − (𝐹𝐼))
Assertion
Ref Expression
bgoldbtbndlem3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem3
StepHypRef Expression
1 fzo0ss1 12692 . . . . . 6 (1..^𝐷) ⊆ (0..^𝐷)
21sseli 3740 . . . . 5 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
3 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
4 fveq2 6352 . . . . . . . 8 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
54eleq1d 2824 . . . . . . 7 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
6 oveq1 6820 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1))
76fveq2d 6356 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
87, 4oveq12d 6831 . . . . . . . 8 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
98breq1d 4814 . . . . . . 7 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
108breq2d 4816 . . . . . . 7 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
115, 9, 103anbi123d 1548 . . . . . 6 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1211rspcv 3445 . . . . 5 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
132, 3, 12syl2imc 41 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1413a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))))
15143imp 1102 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
16 bgoldbtbndlem3.s . . . . 5 𝑆 = (𝑋 − (𝐹𝐼))
17 simp2 1132 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
18 oddprmALTV 42108 . . . . . . . . 9 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ Odd )
19183ad2ant1 1128 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ Odd )
2017, 19anim12i 591 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
2120adantr 472 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
22 omoeALTV 42106 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ) → (𝑋 − (𝐹𝐼)) ∈ Even )
2321, 22syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) ∈ Even )
2416, 23syl5eqel 2843 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 ∈ Even )
25 eldifi 3875 . . . . . . . . . . 11 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
26 prmz 15591 . . . . . . . . . . . 12 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
2726zred 11674 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
28 fzofzp1 12759 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → (𝐼 + 1) ∈ (1...𝐷))
29 elfzo2 12667 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
30 1zzd 11600 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ∈ ℤ)
31 simp2 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ ℤ)
32 eluz2 11885 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
33 zre 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ ℤ → 1 ∈ ℝ)
34 zre 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
35 zre 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
36 leltletr 41818 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3733, 34, 35, 36syl3an 1164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3837exp5o 1449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℤ → (𝐼 ∈ ℤ → (𝐷 ∈ ℤ → (1 ≤ 𝐼 → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
3938com34 91 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℤ → (𝐼 ∈ ℤ → (1 ≤ 𝐼 → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
40393imp 1102 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
4132, 40sylbi 207 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ (ℤ‘1) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
42413imp 1102 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ≤ 𝐷)
43 eluz2 11885 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 1 ≤ 𝐷))
4430, 31, 42, 43syl3anbrc 1429 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ (ℤ‘1))
4529, 44sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ (ℤ‘1))
46 fzisfzounsn 12774 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℤ‘1) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝐷) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4847eleq2d 2825 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ (𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷})))
49 elun 3896 . . . . . . . . . . . . . . . . . 18 ((𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷}) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}))
5048, 49syl6bb 276 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷})))
51 bgoldbtbnd.d . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ (ℤ‘3))
52 eluzge3nn 11923 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℕ)
5453ad2antrl 766 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐷 ∈ ℕ)
55 bgoldbtbnd.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 ∈ (RePart‘𝐷))
5655ad2antrl 766 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐹 ∈ (RePart‘𝐷))
57 simplr 809 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐼 + 1) ∈ (1..^𝐷))
5854, 56, 57iccpartipre 41867 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
5958exp31 631 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
60 elsni 4338 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) ∈ {𝐷} → (𝐼 + 1) = 𝐷)
61 bgoldbtbnd.r . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐷) ∈ ℝ)
6261ad2antrl 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹𝐷) ∈ ℝ)
63 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 + 1) = 𝐷 → (𝐹‘(𝐼 + 1)) = (𝐹𝐷))
6463eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 + 1) = 𝐷 → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6564adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6662, 65mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
6766ex 449 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) = 𝐷 → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6860, 67syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6968a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7059, 69jaod 394 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → (((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7150, 70sylbid 230 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7228, 71mpd 15 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
7372com12 32 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
74733impia 1110 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
75 bgoldbtbnd.n . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ11))
76 eluzelre 11890 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℝ)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
78 oddz 42054 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
7978zred 11674 . . . . . . . . . . . . . . 15 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
80 rexr 10277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝐼 + 1)) ∈ ℝ → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
81 rexr 10277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐼) ∈ ℝ → (𝐹𝐼) ∈ ℝ*)
8280, 81anim12ci 592 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
8382adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
84 elico1 12411 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
86 simpllr 817 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 ∈ ℝ)
87 simplrl 819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
88 simplrr 820 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ∈ ℝ)
89 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 < (𝐹‘(𝐼 + 1)))
9086, 87, 88, 89ltsub1dd 10831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
91 simplr 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑋 ∈ ℝ)
92 simprr 813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
9391, 92resubcld 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9493adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9587, 88resubcld 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ)
96 simplll 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑁 ∈ ℝ)
97 4re 11289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 ∈ ℝ
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 4 ∈ ℝ)
9996, 98resubcld 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑁 − 4) ∈ ℝ)
100 lttr 10306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10194, 95, 99, 100syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10290, 101mpand 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
103102impr 650 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4))
104 4pos 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 4
10597a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 4 ∈ ℝ)
106 simpl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 𝑁 ∈ ℝ)
107105, 106ltsubposd 10805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 < 4 ↔ (𝑁 − 4) < 𝑁))
108104, 107mpbii 223 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑁 − 4) < 𝑁)
109108adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) < 𝑁)
110109adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑁 − 4) < 𝑁)
111 simpll 807 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑁 ∈ ℝ)
11297a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 4 ∈ ℝ)
113111, 112resubcld 10650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) ∈ ℝ)
114 lttr 10306 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
11593, 113, 111, 114syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
116115adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
117103, 110, 116mp2and 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < 𝑁)
118117exp32 632 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
119118com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1201193ad2ant3 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
121120com12 32 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
12285, 121sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
123122com23 86 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
124123exp32 632 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
125124com34 91 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12677, 79, 125syl2an 495 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
1271263adant3 1127 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12874, 127mpd 15 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
129128com13 88 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
13025, 27, 1293syl 18 . . . . . . . . . 10 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
131130imp 444 . . . . . . . . 9 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1321313adant3 1127 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
133132impcom 445 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))
134133imp 444 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ 𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1)))) → (𝑋 − (𝐹𝐼)) < 𝑁)
135134adantrr 755 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) < 𝑁)
13616, 135syl5eqbr 4839 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 < 𝑁)
137 simprr 813 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 4 < 𝑆)
13824, 136, 1373jca 1123 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
139138ex 449 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
14015, 139mpdan 705 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  cdif 3712  cun 3713  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131  *cxr 10265   < clt 10266  cle 10267  cmin 10458  cn 11212  2c2 11262  3c3 11263  4c4 11264  7c7 11267  cz 11569  cdc 11685  cuz 11879  [,)cico 12370  ...cfz 12519  ..^cfzo 12659  cprime 15587  RePartciccp 41859   Even ceven 42047   Odd codd 42048   GoldbachEven cgbe 42143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-prm 15588  df-iccp 41860  df-even 42049  df-odd 42050
This theorem is referenced by:  bgoldbtbnd  42207
  Copyright terms: Public domain W3C validator