Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbst Structured version   Visualization version   GIF version

Theorem bgoldbst 40991
Description: If the binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
bgoldbst (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOddALTV ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem bgoldbst
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ Odd )
2 3odd 40946 . . . . . . 7 3 ∈ Odd
31, 2jctir 560 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
4 omoeALTV 40925 . . . . . 6 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
5 breq2 4627 . . . . . . . 8 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
6 eleq1 2686 . . . . . . . 8 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
75, 6imbi12d 334 . . . . . . 7 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
87rspcv 3295 . . . . . 6 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
93, 4, 83syl 18 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
10 4p3e7 11123 . . . . . . . . 9 (4 + 3) = 7
1110breq1i 4630 . . . . . . . 8 ((4 + 3) < 𝑚 ↔ 7 < 𝑚)
12 4re 11057 . . . . . . . . . . 11 4 ∈ ℝ
1312a1i 11 . . . . . . . . . 10 (𝑚 ∈ Odd → 4 ∈ ℝ)
14 3re 11054 . . . . . . . . . . 11 3 ∈ ℝ
1514a1i 11 . . . . . . . . . 10 (𝑚 ∈ Odd → 3 ∈ ℝ)
16 oddz 40873 . . . . . . . . . . 11 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
1716zred 11442 . . . . . . . . . 10 (𝑚 ∈ Odd → 𝑚 ∈ ℝ)
1813, 15, 17ltaddsubd 10587 . . . . . . . . 9 (𝑚 ∈ Odd → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
1918biimpd 219 . . . . . . . 8 (𝑚 ∈ Odd → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
2011, 19syl5bir 233 . . . . . . 7 (𝑚 ∈ Odd → (7 < 𝑚 → 4 < (𝑚 − 3)))
2120imp 445 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 4 < (𝑚 − 3))
22 pm2.27 42 . . . . . 6 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
2321, 22syl 17 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
24 isgbe 40964 . . . . . 6 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
25 3prm 15349 . . . . . . . . . . . . . 14 3 ∈ ℙ
2625a1i 11 . . . . . . . . . . . . 13 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 3 ∈ ℙ)
27 eleq1 2686 . . . . . . . . . . . . . . . 16 (𝑟 = 3 → (𝑟 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi3d 1402 . . . . . . . . . . . . . . 15 (𝑟 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd )))
29 oveq2 6623 . . . . . . . . . . . . . . . 16 (𝑟 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 3))
3029eqeq2d 2631 . . . . . . . . . . . . . . 15 (𝑟 = 3 → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 3)))
3128, 30anbi12d 746 . . . . . . . . . . . . . 14 (𝑟 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))))
3231adantl 482 . . . . . . . . . . . . 13 ((((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) ∧ 𝑟 = 3) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))))
33 simp1 1059 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑝 ∈ Odd )
34 simp2 1060 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑞 ∈ Odd )
352a1i 11 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 3 ∈ Odd )
3633, 34, 353jca 1240 . . . . . . . . . . . . . . 15 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ))
3736adantl 482 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ))
3816zcnd 11443 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ Odd → 𝑚 ∈ ℂ)
3938ad3antrrr 765 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑚 ∈ ℂ)
40 3cn 11055 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 3 ∈ ℂ)
42 prmz 15332 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 15332 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 zaddcl 11377 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
4542, 43, 44syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℤ)
4645zcnd 11443 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ)
4746adantll 749 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ)
4839, 41, 47subadd2d 10371 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑚 − 3) = (𝑝 + 𝑞) ↔ ((𝑝 + 𝑞) + 3) = 𝑚))
4948biimpa 501 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ((𝑝 + 𝑞) + 3) = 𝑚)
5049eqcomd 2627 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 = ((𝑝 + 𝑞) + 3))
51503ad2antr3 1226 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 = ((𝑝 + 𝑞) + 3))
5237, 51jca 554 . . . . . . . . . . . . 13 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3)))
5326, 32, 52rspcedvd 3306 . . . . . . . . . . . 12 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
5453ex 450 . . . . . . . . . . 11 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5554reximdva 3013 . . . . . . . . . 10 (((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5655reximdva 3013 . . . . . . . . 9 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5756, 1jctild 565 . . . . . . . 8 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))))
58 isgboa 40966 . . . . . . . 8 (𝑚 ∈ GoldbachOddALTV ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5957, 58syl6ibr 242 . . . . . . 7 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOddALTV ))
6059adantld 483 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOddALTV ))
6124, 60syl5bi 232 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOddALTV ))
629, 23, 613syld 60 . . . 4 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddALTV ))
6362com12 32 . . 3 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ GoldbachOddALTV ))
6463expd 452 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → (7 < 𝑚𝑚 ∈ GoldbachOddALTV )))
6564ralrimiv 2961 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOddALTV ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  wrex 2909   class class class wbr 4623  (class class class)co 6615  cc 9894  cr 9895   + caddc 9899   < clt 10034  cmin 10226  3c3 11031  4c4 11032  7c7 11035  cz 11337  cprime 15328   Even ceven 40866   Odd codd 40867   GoldbachEven cgbe 40958   GoldbachOddALTV cgboa 40960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-prm 15329  df-even 40868  df-odd 40869  df-gbe 40961  df-gboa 40963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator