Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem2 Structured version   Visualization version   GIF version

Theorem bfplem2 33752
Description: Lemma for bfp 33753. Using the point found in bfplem1 33751, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ𝑗) (where 𝑃 = ((⇝𝑡𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐾(𝑧)

Proof of Theorem bfplem2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23130 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22186 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
5 bfp.8 . . . . 5 𝐽 = (MetOpen‘𝐷)
65mopntopon 22291 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
73, 4, 63syl 18 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
9 bfp.4 . . . 4 (𝜑𝐾 ∈ ℝ+)
10 bfp.5 . . . 4 (𝜑𝐾 < 1)
11 bfp.6 . . . 4 (𝜑𝐹:𝑋𝑋)
12 bfp.7 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
13 bfp.9 . . . 4 (𝜑𝐴𝑋)
14 bfp.10 . . . 4 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
151, 8, 9, 10, 11, 12, 5, 13, 14bfplem1 33751 . . 3 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
16 lmcl 21149 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
177, 15, 16syl2anc 694 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
183adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
1918, 4syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
20 nnuz 11761 . . . . . . . . . 10 ℕ = (ℤ‘1)
21 1zzd 11446 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℤ)
22 eqidd 2652 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
2315adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
24 rphalfcl 11896 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
2524adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
265, 19, 20, 21, 22, 23, 25lmmcvg 23105 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
27 simpr 476 . . . . . . . . . . . 12 (((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
2827ralimi 2981 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
29 nnz 11437 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
3029adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
31 uzid 11740 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
32 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
3332oveq1d 6705 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
3433breq1d 4695 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3534rspcv 3336 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3630, 31, 353syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3730, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ𝑗))
38 peano2uz 11779 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
39 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗 + 1) → (𝐺𝑘) = (𝐺‘(𝑗 + 1)))
4039oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑗 + 1) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)))
4140breq1d 4695 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑗 + 1) → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4241rspcv 3336 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4337, 38, 423syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
44 1zzd 11446 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
4520, 14, 44, 13, 11algrp1 15334 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4645adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4746oveq1d 6705 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)))
4847breq1d 4695 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4943, 48sylibd 229 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
5036, 49jcad 554 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))))
513ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
5220, 14, 44, 13, 11algrf 15333 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ⟶𝑋)
5352adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝐺:ℕ⟶𝑋)
5453ffvelrnda 6399 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ 𝑋)
5517ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
56 metcl 22184 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5751, 54, 55, 56syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5811ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐹:𝑋𝑋)
5958, 54ffvelrnd 6400 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝐺𝑗)) ∈ 𝑋)
60 metcl 22184 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6151, 59, 55, 60syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
62 rpre 11877 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
6362ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
64 lt2halves 11305 . . . . . . . . . . . . 13 ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6557, 61, 63, 64syl3anc 1366 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6611, 17ffvelrnd 6400 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
67 metcl 22184 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
683, 66, 17, 67syl3anc 1366 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6968ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
7058, 55ffvelrnd 6400 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
71 metcl 22184 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7251, 59, 70, 71syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7372, 61readdcld 10107 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7457, 61readdcld 10107 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
75 mettri2 22193 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
7651, 59, 70, 55, 75syl13anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
779rpred 11910 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7877ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℝ)
7978, 57remulcld 10108 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
8054, 55jca 553 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋))
8112ralrimivva 3000 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
8281ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
83 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝐹𝑥) = (𝐹‘(𝐺𝑗)))
8483oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)))
85 oveq1 6697 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝑥𝐷𝑦) = ((𝐺𝑗)𝐷𝑦))
8685oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷𝑦)))
8784, 86breq12d 4698 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝐺𝑗) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦))))
88 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑦) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
8988oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))))
90 oveq2 6698 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐺𝑗)𝐷𝑦) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9190oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐾 · ((𝐺𝑗)𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
9289, 91breq12d 4698 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9387, 92rspc2v 3353 . . . . . . . . . . . . . . . . 17 (((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9480, 82, 93sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
95 1red 10093 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
96 metge0 22197 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9751, 54, 55, 96syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
98 1re 10077 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
99 ltle 10164 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 → 𝐾 ≤ 1))
10077, 98, 99sylancl 695 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 < 1 → 𝐾 ≤ 1))
10110, 100mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≤ 1)
102101ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ≤ 1)
10378, 95, 57, 97, 102lemul1ad 11001 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
10457recnd 10106 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℂ)
105104mulid2d 10096 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
106103, 105breqtrd 4711 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10772, 79, 57, 94, 106letrd 10232 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10872, 57, 61, 107leadd1dd 10679 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
10969, 73, 74, 76, 108letrd 10232 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
110 lelttr 10166 . . . . . . . . . . . . . 14 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11169, 74, 63, 110syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
112109, 111mpand 711 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11350, 65, 1123syld 60 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11428, 113syl5 34 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
115114rexlimdva 3060 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11626, 115mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥)
117 ltle 10164 . . . . . . . . 9 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
11868, 62, 117syl2an 493 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
119116, 118mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥)
12062adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
121120recnd 10106 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
122121addid2d 10275 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 + 𝑥) = 𝑥)
123119, 122breqtrrd 4713 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
124123ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
125 0re 10078 . . . . . 6 0 ∈ ℝ
126 alrple 12075 . . . . . 6 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
12768, 125, 126sylancl 695 . . . . 5 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
128124, 127mpbird 247 . . . 4 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0)
129 metge0 22197 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
1303, 66, 17, 129syl3anc 1366 . . . 4 (𝜑 → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
131 letri3 10161 . . . . 5 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
13268, 125, 131sylancl 695 . . . 4 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
133128, 130, 132mpbir2and 977 . . 3 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0)
134 meteq0 22191 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
1353, 66, 17, 134syl3anc 1366 . . 3 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
136133, 135mpbid 222 . 2 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺))
137 fveq2 6229 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑧) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
138 id 22 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → 𝑧 = ((⇝𝑡𝐽)‘𝐺))
139137, 138eqeq12d 2666 . . 3 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
140139rspcev 3340 . 2 ((((⇝𝑡𝐽)‘𝐺) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
14117, 136, 140syl2anc 694 1 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  c0 3948  {csn 4210   class class class wbr 4685   × cxp 5141  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  1st c1st 7208  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  cn 11058  2c2 11108  cz 11415  cuz 11725  +crp 11870  seqcseq 12841  ∞Metcxmt 19779  Metcme 19780  MetOpencmopn 19784  TopOnctopon 20763  𝑡clm 21078  CMetcms 23098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-bases 20798  df-ntr 20872  df-nei 20950  df-lm 21081  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-cfil 23099  df-cau 23100  df-cmet 23101
This theorem is referenced by:  bfp  33753
  Copyright terms: Public domain W3C validator