MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutr1 Structured version   Visualization version   GIF version

Theorem bezoutr1 15489
Description: Converse of bezout 15467 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))

Proof of Theorem bezoutr1
StepHypRef Expression
1 bezoutr 15488 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
21adantr 466 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
3 simpr 471 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1)
42, 3breqtrd 4810 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ 1)
5 gcdcl 15435 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
65nn0zd 11681 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
76ad2antrr 697 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℤ)
8 1nn 11232 . . . . . 6 1 ∈ ℕ
98a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → 1 ∈ ℕ)
10 dvdsle 15240 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
117, 9, 10syl2anc 565 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
124, 11mpd 15 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ≤ 1)
13 simpll 742 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
14 oveq1 6799 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
15 oveq1 6799 . . . . . . . . . . . . 13 (𝐵 = 0 → (𝐵 · 𝑌) = (0 · 𝑌))
1614, 15oveqan12d 6811 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (0 · 𝑌)))
17 zcn 11583 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
1817mul02d 10435 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (0 · 𝑋) = 0)
19 zcn 11583 . . . . . . . . . . . . . 14 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
2019mul02d 10435 . . . . . . . . . . . . 13 (𝑌 ∈ ℤ → (0 · 𝑌) = 0)
2118, 20oveqan12d 6811 . . . . . . . . . . . 12 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((0 · 𝑋) + (0 · 𝑌)) = (0 + 0))
2216, 21sylan9eqr 2826 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = (0 + 0))
23 00id 10412 . . . . . . . . . . 11 (0 + 0) = 0
2422, 23syl6eq 2820 . . . . . . . . . 10 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
2524adantll 685 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
26 0ne1 11289 . . . . . . . . . 10 0 ≠ 1
2726a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → 0 ≠ 1)
2825, 27eqnetrd 3009 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1)
2928ex 397 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1))
3029necon2bd 2958 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3130imp 393 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
32 gcdn0cl 15431 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
3313, 31, 32syl2anc 565 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℕ)
34 nnle1eq1 11249 . . . 4 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3533, 34syl 17 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3612, 35mpbid 222 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) = 1)
3736ex 397 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  cle 10276  cn 11221  cz 11578  cdvds 15188   gcd cgcd 15423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424
This theorem is referenced by:  divgcdcoprm0  15585  jm2.19lem1  38075
  Copyright terms: Public domain W3C validator