![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bezoutr | Structured version Visualization version GIF version |
Description: Partial converse to bezout 15468. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
Ref | Expression |
---|---|
bezoutr | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcl 15436 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) | |
2 | 1 | nn0zd 11687 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) |
3 | 2 | adantr 466 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ) |
4 | simpll 750 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝐴 ∈ ℤ) | |
5 | simprl 754 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝑋 ∈ ℤ) | |
6 | 4, 5 | zmulcld 11695 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 · 𝑋) ∈ ℤ) |
7 | simplr 752 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝐵 ∈ ℤ) | |
8 | simprr 756 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝑌 ∈ ℤ) | |
9 | 7, 8 | zmulcld 11695 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐵 · 𝑌) ∈ ℤ) |
10 | gcddvds 15433 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
11 | 10 | adantr 466 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
12 | 11 | simpld 482 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ 𝐴) |
13 | dvdsmultr1 15228 | . . . 4 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋))) | |
14 | 13 | imp 393 | . . 3 ⊢ ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑋 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐴) → (𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋)) |
15 | 3, 4, 5, 12, 14 | syl31anc 1479 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋)) |
16 | 11 | simprd 483 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ 𝐵) |
17 | dvdsmultr1 15228 | . . . 4 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 → (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌))) | |
18 | 17 | imp 393 | . . 3 ⊢ ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌)) |
19 | 3, 7, 8, 16, 18 | syl31anc 1479 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌)) |
20 | dvds2add 15224 | . . 3 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 · 𝑋) ∈ ℤ ∧ (𝐵 · 𝑌) ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋) ∧ (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))) | |
21 | 20 | imp 393 | . 2 ⊢ ((((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 · 𝑋) ∈ ℤ ∧ (𝐵 · 𝑌) ∈ ℤ) ∧ ((𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋) ∧ (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌))) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) |
22 | 3, 6, 9, 15, 19, 21 | syl32anc 1484 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 ∈ wcel 2145 class class class wbr 4787 (class class class)co 6796 + caddc 10145 · cmul 10147 ℤcz 11584 ∥ cdvds 15189 gcd cgcd 15424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-gcd 15425 |
This theorem is referenced by: bezoutr1 15490 |
Copyright terms: Public domain | W3C validator |