MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem4 Structured version   Visualization version   GIF version

Theorem bezoutlem4 15453
Description: Lemma for bezout 15454. (Contributed by Mario Carneiro, 22-Feb-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem4 (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hint:   𝑀(𝑧)

Proof of Theorem bezoutlem4
Dummy variables 𝑡 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout.3 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
2 bezout.4 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
3 gcddvds 15419 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
41, 2, 3syl2anc 696 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
54simpld 477 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
61, 2gcdcld 15424 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76nn0zd 11664 . . . . . . 7 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
8 divides 15176 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴))
97, 1, 8syl2anc 696 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴))
105, 9mpbid 222 . . . . 5 (𝜑 → ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴)
114simprd 482 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
12 divides 15176 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
137, 2, 12syl2anc 696 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
1411, 13mpbid 222 . . . . 5 (𝜑 → ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵)
15 reeanv 3237 . . . . . 6 (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) ↔ (∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
16 bezout.1 . . . . . . . . . . 11 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
17 bezout.2 . . . . . . . . . . 11 𝐺 = inf(𝑀, ℝ, < )
18 bezout.5 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1916, 1, 2, 17, 18bezoutlem2 15451 . . . . . . . . . 10 (𝜑𝐺𝑀)
20 oveq2 6813 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
2120oveq1d 6820 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
2221eqeq2d 2762 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
23 oveq2 6813 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
2423oveq2d 6821 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2524eqeq2d 2762 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2622, 25cbvrex2v 3311 . . . . . . . . . . . 12 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
27 eqeq1 2756 . . . . . . . . . . . . 13 (𝑧 = 𝐺 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
28272rexbidv 3187 . . . . . . . . . . . 12 (𝑧 = 𝐺 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2926, 28syl5bb 272 . . . . . . . . . . 11 (𝑧 = 𝐺 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3029, 16elrab2 3499 . . . . . . . . . 10 (𝐺𝑀 ↔ (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3119, 30sylib 208 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3231simprd 482 . . . . . . . 8 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
33 simprrl 823 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℤ)
34 simprll 821 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℤ)
3533, 34zmulcld 11672 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℤ)
36 simprrr 824 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℤ)
37 simprlr 822 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℤ)
3836, 37zmulcld 11672 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℤ)
3935, 38zaddcld 11670 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ)
407adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℤ)
41 dvdsmul2 15198 . . . . . . . . . . . . . . 15 ((((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)))
4239, 40, 41syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)))
4335zcnd 11667 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℂ)
4438zcnd 11667 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℂ)
4540zcnd 11667 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℂ)
4643, 44, 45adddird 10249 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)) = (((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) + ((𝑡 · 𝑣) · (𝐴 gcd 𝐵))))
4733zcnd 11667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℂ)
4834zcnd 11667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℂ)
4947, 48, 45mul32d 10430 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) = ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢))
5036zcnd 11667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℂ)
5137zcnd 11667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℂ)
5250, 51, 45mul32d 10430 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑡 · 𝑣) · (𝐴 gcd 𝐵)) = ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣))
5349, 52oveq12d 6823 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) + ((𝑡 · 𝑣) · (𝐴 gcd 𝐵))) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
5446, 53eqtrd 2786 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
5542, 54breqtrd 4822 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
56 oveq1 6812 . . . . . . . . . . . . . . 15 ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) = (𝐴 · 𝑢))
57 oveq1 6812 . . . . . . . . . . . . . . 15 ((𝑡 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣) = (𝐵 · 𝑣))
5856, 57oveqan12d 6824 . . . . . . . . . . . . . 14 (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
5958breq2d 4808 . . . . . . . . . . . . 13 (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
6055, 59syl5ibcom 235 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
61 breq2 4800 . . . . . . . . . . . . 13 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝐴 gcd 𝐵) ∥ 𝐺 ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
6261imbi2d 329 . . . . . . . . . . . 12 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺) ↔ (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣)))))
6360, 62syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))
6463expr 644 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6564com23 86 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6665rexlimdvva 3168 . . . . . . . 8 (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6732, 66mpd 15 . . . . . . 7 (𝜑 → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))
6867rexlimdvv 3167 . . . . . 6 (𝜑 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))
6915, 68syl5bir 233 . . . . 5 (𝜑 → ((∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))
7010, 14, 69mp2and 717 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐺)
7131simpld 477 . . . . 5 (𝜑𝐺 ∈ ℕ)
72 dvdsle 15226 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐺 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺))
737, 71, 72syl2anc 696 . . . 4 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺))
7470, 73mpd 15 . . 3 (𝜑 → (𝐴 gcd 𝐵) ≤ 𝐺)
75 breq2 4800 . . . . 5 (𝐴 = 0 → (𝐺𝐴𝐺 ∥ 0))
7616, 1, 2bezoutlem1 15450 . . . . . . . 8 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
7716, 1, 2, 17, 18bezoutlem3 15452 . . . . . . . 8 (𝜑 → ((abs‘𝐴) ∈ 𝑀𝐺 ∥ (abs‘𝐴)))
7876, 77syld 47 . . . . . . 7 (𝜑 → (𝐴 ≠ 0 → 𝐺 ∥ (abs‘𝐴)))
7971nnzd 11665 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
80 dvdsabsb 15195 . . . . . . . 8 ((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐺𝐴𝐺 ∥ (abs‘𝐴)))
8179, 1, 80syl2anc 696 . . . . . . 7 (𝜑 → (𝐺𝐴𝐺 ∥ (abs‘𝐴)))
8278, 81sylibrd 249 . . . . . 6 (𝜑 → (𝐴 ≠ 0 → 𝐺𝐴))
8382imp 444 . . . . 5 ((𝜑𝐴 ≠ 0) → 𝐺𝐴)
84 dvds0 15191 . . . . . 6 (𝐺 ∈ ℤ → 𝐺 ∥ 0)
8579, 84syl 17 . . . . 5 (𝜑𝐺 ∥ 0)
8675, 83, 85pm2.61ne 3009 . . . 4 (𝜑𝐺𝐴)
87 breq2 4800 . . . . 5 (𝐵 = 0 → (𝐺𝐵𝐺 ∥ 0))
88 eqid 2752 . . . . . . . . . 10 {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}
8988, 2, 1bezoutlem1 15450 . . . . . . . . 9 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
90 rexcom 3229 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
911zcnd 11667 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
9291adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ)
93 zcn 11566 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9493ad2antll 767 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ)
9592, 94mulcld 10244 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ)
962zcnd 11667 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
9796adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ)
98 zcn 11566 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
9998ad2antrl 766 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ)
10097, 99mulcld 10244 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ)
10195, 100addcomd 10422 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))
102101eqeq2d 2762 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
1031022rexbidva 3186 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
10490, 103syl5bb 272 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
105104rabbidv 3321 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
10616, 105syl5eq 2798 . . . . . . . . . 10 (𝜑𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
107106eleq2d 2817 . . . . . . . . 9 (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
10889, 107sylibrd 249 . . . . . . . 8 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀))
10916, 1, 2, 17, 18bezoutlem3 15452 . . . . . . . 8 (𝜑 → ((abs‘𝐵) ∈ 𝑀𝐺 ∥ (abs‘𝐵)))
110108, 109syld 47 . . . . . . 7 (𝜑 → (𝐵 ≠ 0 → 𝐺 ∥ (abs‘𝐵)))
111 dvdsabsb 15195 . . . . . . . 8 ((𝐺 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐺𝐵𝐺 ∥ (abs‘𝐵)))
11279, 2, 111syl2anc 696 . . . . . . 7 (𝜑 → (𝐺𝐵𝐺 ∥ (abs‘𝐵)))
113110, 112sylibrd 249 . . . . . 6 (𝜑 → (𝐵 ≠ 0 → 𝐺𝐵))
114113imp 444 . . . . 5 ((𝜑𝐵 ≠ 0) → 𝐺𝐵)
11587, 114, 85pm2.61ne 3009 . . . 4 (𝜑𝐺𝐵)
116 dvdslegcd 15420 . . . . 5 (((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐺𝐴𝐺𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵)))
11779, 1, 2, 18, 116syl31anc 1476 . . . 4 (𝜑 → ((𝐺𝐴𝐺𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵)))
11886, 115, 117mp2and 717 . . 3 (𝜑𝐺 ≤ (𝐴 gcd 𝐵))
1196nn0red 11536 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℝ)
12071nnred 11219 . . . 4 (𝜑𝐺 ∈ ℝ)
121119, 120letri3d 10363 . . 3 (𝜑 → ((𝐴 gcd 𝐵) = 𝐺 ↔ ((𝐴 gcd 𝐵) ≤ 𝐺𝐺 ≤ (𝐴 gcd 𝐵))))
12274, 118, 121mpbir2and 995 . 2 (𝜑 → (𝐴 gcd 𝐵) = 𝐺)
123122, 19eqeltrd 2831 1 (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wne 2924  wrex 3043  {crab 3046   class class class wbr 4796  cfv 6041  (class class class)co 6805  infcinf 8504  cc 10118  cr 10119  0cc0 10120   + caddc 10123   · cmul 10125   < clt 10258  cle 10259  cn 11204  cz 11561  abscabs 14165  cdvds 15174   gcd cgcd 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-dvds 15175  df-gcd 15411
This theorem is referenced by:  bezout  15454
  Copyright terms: Public domain W3C validator