MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq Structured version   Visualization version   GIF version

Theorem bernneq 13030
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))

Proof of Theorem bernneq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . . . . 8 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
21oveq2d 6706 . . . . . . 7 (𝑗 = 0 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 0)))
3 oveq2 6698 . . . . . . 7 (𝑗 = 0 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑0))
42, 3breq12d 4698 . . . . . 6 (𝑗 = 0 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0)))
54imbi2d 329 . . . . 5 (𝑗 = 0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))))
6 oveq2 6698 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
76oveq2d 6706 . . . . . . 7 (𝑗 = 𝑘 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑘)))
8 oveq2 6698 . . . . . . 7 (𝑗 = 𝑘 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑘))
97, 8breq12d 4698 . . . . . 6 (𝑗 = 𝑘 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)))
109imbi2d 329 . . . . 5 (𝑗 = 𝑘 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))))
11 oveq2 6698 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1211oveq2d 6706 . . . . . . 7 (𝑗 = (𝑘 + 1) → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · (𝑘 + 1))))
13 oveq2 6698 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑(𝑘 + 1)))
1412, 13breq12d 4698 . . . . . 6 (𝑗 = (𝑘 + 1) → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))
1514imbi2d 329 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
16 oveq2 6698 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
1716oveq2d 6706 . . . . . . 7 (𝑗 = 𝑁 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑁)))
18 oveq2 6698 . . . . . . 7 (𝑗 = 𝑁 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑁))
1917, 18breq12d 4698 . . . . . 6 (𝑗 = 𝑁 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
2019imbi2d 329 . . . . 5 (𝑗 = 𝑁 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
21 recn 10064 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22 mul01 10253 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2322oveq2d 6706 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
24 1p0e1 11171 . . . . . . . . 9 (1 + 0) = 1
2523, 24syl6eq 2701 . . . . . . . 8 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
26 1le1 10693 . . . . . . . . 9 1 ≤ 1
27 ax-1cn 10032 . . . . . . . . . . 11 1 ∈ ℂ
28 addcl 10056 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
2927, 28mpan 706 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
30 exp0 12904 . . . . . . . . . 10 ((1 + 𝐴) ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3129, 30syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3226, 31syl5breqr 4723 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ≤ ((1 + 𝐴)↑0))
3325, 32eqbrtrd 4707 . . . . . . 7 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3421, 33syl 17 . . . . . 6 (𝐴 ∈ ℝ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3534adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
36 1re 10077 . . . . . . . . . . . . . 14 1 ∈ ℝ
37 nn0re 11339 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
38 remulcl 10059 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 · 𝑘) ∈ ℝ)
3937, 38sylan2 490 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℝ)
40 readdcl 10057 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝐴 · 𝑘) ∈ ℝ) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
4136, 39, 40sylancr 696 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
42 simpl 472 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
43 readdcl 10057 . . . . . . . . . . . . 13 (((1 + (𝐴 · 𝑘)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4441, 42, 43syl2anc 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4544adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
46 readdcl 10057 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
4736, 46mpan 706 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + 𝐴) ∈ ℝ)
4941, 48remulcld 10108 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
5049adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
51 reexpcl 12917 . . . . . . . . . . . . . 14 (((1 + 𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5247, 51sylan 487 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5352, 48remulcld 10108 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
5453adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
55 remulcl 10059 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
5655anidms 678 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
57 msqge0 10587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
5856, 57jca 553 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)))
59 nn0ge0 11356 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
6037, 59jca 553 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
61 mulge0 10584 . . . . . . . . . . . . . . . 16 ((((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)) ∧ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6258, 60, 61syl2an 493 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6321adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
64 nn0cn 11340 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6564adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6663, 63, 65mul32d 10284 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐴) · 𝑘) = ((𝐴 · 𝑘) · 𝐴))
6762, 66breqtrd 4711 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝑘) · 𝐴))
68 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝐴 ∈ ℝ)
6938, 68remulcld 10108 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7037, 69sylan2 490 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7144, 70addge01d 10653 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (0 ≤ ((𝐴 · 𝑘) · 𝐴) ↔ ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴))))
7267, 71mpbid 222 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)))
73 mulcl 10058 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
74 addcl 10056 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
7527, 73, 74sylancr 696 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
76 simpl 472 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝐴 ∈ ℂ)
7773, 76mulcld 10098 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℂ)
7875, 76, 77addassd 10100 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
79 muladd11 10244 . . . . . . . . . . . . . . . 16 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8073, 76, 79syl2anc 694 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8178, 80eqtr4d 2688 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8221, 64, 81syl2an 493 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8372, 82breqtrd 4711 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8483adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8541adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
8652adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
8748adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + 𝐴) ∈ ℝ)
88 neg1rr 11163 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
89 leadd2 10535 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
9088, 36, 89mp3an13 1455 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
91 1pneg1e0 11167 . . . . . . . . . . . . . . . 16 (1 + -1) = 0
9291breq1i 4692 . . . . . . . . . . . . . . 15 ((1 + -1) ≤ (1 + 𝐴) ↔ 0 ≤ (1 + 𝐴))
9390, 92syl6bb 276 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ 0 ≤ (1 + 𝐴)))
9493biimpa 500 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → 0 ≤ (1 + 𝐴))
9594ad2ant2r 798 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → 0 ≤ (1 + 𝐴))
96 simprr 811 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))
9785, 86, 87, 95, 96lemul1ad 11001 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
9845, 50, 54, 84, 97letrd 10232 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
99 adddi 10063 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
10027, 99mp3an3 1453 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
101 mulid1 10075 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
102101adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
103102oveq2d 6706 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
104100, 103eqtrd 2685 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
105104oveq2d 6706 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = (1 + ((𝐴 · 𝑘) + 𝐴)))
106 addass 10061 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10727, 106mp3an1 1451 . . . . . . . . . . . . . 14 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10873, 76, 107syl2anc 694 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
109105, 108eqtr4d 2688 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11021, 64, 109syl2an 493 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
111110adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11227, 21, 28sylancr 696 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
113 expp1 12907 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
114112, 113sylan 487 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
115114adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
11698, 111, 1153brtr4d 4717 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))
117116exp43 639 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑘 ∈ ℕ0 → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
118117com12 32 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
119118impd 446 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
120119a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)) → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
1215, 10, 15, 20, 35, 120nn0ind 11510 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
122121expd 451 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
123122com12 32 . 2 (𝐴 ∈ ℝ → (𝑁 ∈ ℕ0 → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
1241233imp 1275 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  -cneg 10305  0cn0 11330  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901
This theorem is referenced by:  bernneq2  13031  stoweidlem1  40536  stoweidlem10  40545  stoweidlem42  40577
  Copyright terms: Public domain W3C validator