![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayimaon | Structured version Visualization version GIF version |
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
Ref | Expression |
---|---|
bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 31953 | . . . . . 6 ⊢ bday : No –onto→On | |
2 | fofun 6154 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday |
4 | funimaexg 6013 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
5 | 3, 4 | mpan 706 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) |
6 | uniexg 6997 | . . . 4 ⊢ (( bday “ 𝐴) ∈ V → ∪ ( bday “ 𝐴) ∈ V) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) |
8 | imassrn 5512 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
9 | forn 6156 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
10 | 1, 9 | ax-mp 5 | . . . . 5 ⊢ ran bday = On |
11 | 8, 10 | sseqtri 3670 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On |
12 | ssorduni 7027 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) |
14 | 7, 13 | jctil 559 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) |
15 | elon2 5772 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
16 | sucelon 7059 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
17 | 15, 16 | bitr3i 266 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) |
18 | 14, 17 | sylib 208 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ∪ cuni 4468 ran crn 5144 “ cima 5146 Ord word 5760 Oncon0 5761 suc csuc 5763 Fun wfun 5920 –onto→wfo 5924 No csur 31918 bday cbday 31920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-1o 7605 df-no 31921 df-bday 31923 |
This theorem is referenced by: noetalem1 31988 |
Copyright terms: Public domain | W3C validator |