![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayfo | Structured version Visualization version GIF version |
Description: The birthday function maps the surreals onto the ordinals. Alling's axiom (B). (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
bdayfo | ⊢ bday : No –onto→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7139 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
2 | 1 | rgen 2951 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
3 | df-bday 31923 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 3 | mptfng 6057 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
5 | 2, 4 | mpbi 220 | . 2 ⊢ bday Fn No |
6 | 3 | rnmpt 5403 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
7 | noxp1o 31941 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1𝑜}) ∈ No ) | |
8 | 1on 7612 | . . . . . . . . . 10 ⊢ 1𝑜 ∈ On | |
9 | 8 | elexi 3244 | . . . . . . . . 9 ⊢ 1𝑜 ∈ V |
10 | 9 | snnz 4340 | . . . . . . . 8 ⊢ {1𝑜} ≠ ∅ |
11 | dmxp 5376 | . . . . . . . 8 ⊢ ({1𝑜} ≠ ∅ → dom (𝑦 × {1𝑜}) = 𝑦) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1𝑜}) = 𝑦 |
13 | 12 | eqcomi 2660 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1𝑜}) |
14 | dmeq 5356 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 × {1𝑜}) → dom 𝑥 = dom (𝑦 × {1𝑜})) | |
15 | 14 | eqeq2d 2661 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1𝑜}) → (𝑦 = dom 𝑥 ↔ 𝑦 = dom (𝑦 × {1𝑜}))) |
16 | 15 | rspcev 3340 | . . . . . 6 ⊢ (((𝑦 × {1𝑜}) ∈ No ∧ 𝑦 = dom (𝑦 × {1𝑜})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
17 | 7, 13, 16 | sylancl 695 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
18 | nodmon 31928 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
19 | eleq1a 2725 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
21 | 20 | rexlimiv 3056 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
22 | 17, 21 | impbii 199 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
23 | 22 | abbi2i 2767 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
24 | 6, 23 | eqtr4i 2676 | . 2 ⊢ ran bday = On |
25 | df-fo 5932 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
26 | 5, 24, 25 | mpbir2an 975 | 1 ⊢ bday : No –onto→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {cab 2637 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 Vcvv 3231 ∅c0 3948 {csn 4210 × cxp 5141 dom cdm 5143 ran crn 5144 Oncon0 5761 Fn wfn 5921 –onto→wfo 5924 1𝑜c1o 7598 No csur 31918 bday cbday 31920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-1o 7605 df-no 31921 df-bday 31923 |
This theorem is referenced by: nodense 31967 bdayimaon 31968 nosupno 31974 nosupbday 31976 noetalem3 31990 noetalem4 31991 bdayfun 32013 bdayfn 32014 bdaydm 32015 bdayrn 32016 bdayelon 32017 noprc 32020 |
Copyright terms: Public domain | W3C validator |