MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval5 Structured version   Visualization version   GIF version

Theorem bcval5 13270
Description: Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcval5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))

Proof of Theorem bcval5
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 13257 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 473 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 mulcl 10183 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
43adantl 473 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
5 mulass 10187 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
65adantl 473 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
7 simplr 809 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ)
8 elfzuz3 12503 . . . . . . . . . . . . . 14 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
98adantl 473 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐾))
10 eluznn 11922 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ)
117, 9, 10syl2anc 696 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ)
1211adantrr 755 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℕ)
13 simplr 809 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℕ)
14 nnre 11190 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
15 nnrp 12006 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
16 ltsubrp 12030 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ+) → (𝑁𝐾) < 𝑁)
1714, 15, 16syl2an 495 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾) < 𝑁)
1812, 13, 17syl2anc 696 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) < 𝑁)
1912nnzd 11644 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℤ)
20 nnz 11562 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2120ad2antlr 765 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℤ)
2219, 21zsubcld 11650 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℤ)
23 zltp1le 11590 . . . . . . . . . . 11 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2422, 19, 23syl2anc 696 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2518, 24mpbid 222 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ≤ 𝑁)
2622peano2zd 11648 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ∈ ℤ)
27 eluz 11864 . . . . . . . . . 10 ((((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2826, 19, 27syl2anc 696 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2925, 28mpbird 247 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
30 simprr 813 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
31 nnuz 11887 . . . . . . . . 9 ℕ = (ℤ‘1)
3230, 31syl6eleq 2837 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ (ℤ‘1))
33 fvi 6405 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) = 𝑘)
34 elfzelz 12506 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
3534zcnd 11646 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
3633, 35eqeltrd 2827 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) ∈ ℂ)
3736adantl 473 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℂ)
384, 6, 29, 32, 37seqsplit 12999 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (seq1( · , I )‘𝑁) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
39 facnn 13227 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
4012, 39syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
41 facnn 13227 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4230, 41syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4342oveq1d 6816 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4438, 40, 433eqtr4d 2792 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4544expr 644 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
46 simpll 807 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
47 faccl 13235 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
48 nncn 11191 . . . . . . . . 9 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ)
4946, 47, 483syl 18 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
5049mulid2d 10221 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (!‘𝑁))
5111, 39syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
5251oveq2d 6817 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
5350, 52eqtr3d 2784 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (1 · (seq1( · , I )‘𝑁)))
54 fveq2 6340 . . . . . . . . 9 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = (!‘0))
55 fac0 13228 . . . . . . . . 9 (!‘0) = 1
5654, 55syl6eq 2798 . . . . . . . 8 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = 1)
57 oveq1 6808 . . . . . . . . . . 11 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = (0 + 1))
58 0p1e1 11295 . . . . . . . . . . 11 (0 + 1) = 1
5957, 58syl6eq 2798 . . . . . . . . . 10 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = 1)
6059seqeq1d 12972 . . . . . . . . 9 ((𝑁𝐾) = 0 → seq((𝑁𝐾) + 1)( · , I ) = seq1( · , I ))
6160fveq1d 6342 . . . . . . . 8 ((𝑁𝐾) = 0 → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = (seq1( · , I )‘𝑁))
6256, 61oveq12d 6819 . . . . . . 7 ((𝑁𝐾) = 0 → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
6362eqeq2d 2758 . . . . . 6 ((𝑁𝐾) = 0 → ((!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) ↔ (!‘𝑁) = (1 · (seq1( · , I )‘𝑁))))
6453, 63syl5ibrcom 237 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) = 0 → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
65 fznn0sub 12537 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
6665adantl 473 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
67 elnn0 11457 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6866, 67sylib 208 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6945, 64, 68mpjaod 395 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
7069oveq1d 6816 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
71 eqid 2748 . . . . . 6 (ℤ‘((𝑁𝐾) + 1)) = (ℤ‘((𝑁𝐾) + 1))
72 nn0z 11563 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
73 zsubcl 11582 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
7472, 20, 73syl2an 495 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
7574peano2zd 11648 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → ((𝑁𝐾) + 1) ∈ ℤ)
7675adantr 472 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
77 fvi 6405 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) = 𝑘)
78 eluzelcn 11862 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → 𝑘 ∈ ℂ)
7977, 78eqeltrd 2827 . . . . . . 7 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) ∈ ℂ)
8079adantl 473 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (ℤ‘((𝑁𝐾) + 1))) → ( I ‘𝑘) ∈ ℂ)
813adantl 473 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
8271, 76, 80, 81seqf 12987 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → seq((𝑁𝐾) + 1)( · , I ):(ℤ‘((𝑁𝐾) + 1))⟶ℂ)
8311, 7, 17syl2anc 696 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 𝑁)
8474adantr 472 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
8511nnzd 11644 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
8684, 85, 23syl2anc 696 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8783, 86mpbid 222 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 𝑁)
8876, 85, 27syl2anc 696 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8987, 88mpbird 247 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
9082, 89ffvelrnd 6511 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) ∈ ℂ)
91 elfznn0 12597 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
9291adantl 473 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
93 faccl 13235 . . . . . 6 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
9492, 93syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
9594nncnd 11199 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
96 faccl 13235 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 → (!‘(𝑁𝐾)) ∈ ℕ)
9766, 96syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
9897nncnd 11199 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
9994nnne0d 11228 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
10097nnne0d 11228 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
10190, 95, 98, 99, 100divcan5d 10990 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
1022, 70, 1013eqtrd 2786 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
103 nnnn0 11462 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
104103ad2antlr 765 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
105 nncn 11191 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ∈ ℂ)
106 nnne0 11216 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ≠ 0)
107105, 106div0d 10963 . . . 4 ((!‘𝐾) ∈ ℕ → (0 / (!‘𝐾)) = 0)
108104, 93, 1073syl 18 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 / (!‘𝐾)) = 0)
1093adantl 473 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
110 fvi 6405 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) = 𝑘)
111 elfzelz 12506 . . . . . . . 8 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℤ)
112111zcnd 11646 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℂ)
113110, 112eqeltrd 2827 . . . . . 6 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) ∈ ℂ)
114113adantl 473 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (((𝑁𝐾) + 1)...𝑁)) → ( I ‘𝑘) ∈ ℂ)
115 mul02 10377 . . . . . 6 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
116115adantl 473 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
117 mul01 10378 . . . . . 6 (𝑘 ∈ ℂ → (𝑘 · 0) = 0)
118117adantl 473 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
119 simpr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 ∈ (0...𝑁))
120 nn0uz 11886 . . . . . . . . . . . 12 0 = (ℤ‘0)
121104, 120syl6eleq 2837 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘0))
12272ad2antrr 764 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
123 elfz5 12498 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
124121, 122, 123syl2anc 696 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
125 nn0re 11464 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
126125ad2antrr 764 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
127 nnre 11190 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
128127ad2antlr 765 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
129126, 128subge0d 10780 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ≤ (𝑁𝐾) ↔ 𝐾𝑁))
130124, 129bitr4d 271 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 0 ≤ (𝑁𝐾)))
131119, 130mtbid 313 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 0 ≤ (𝑁𝐾))
13274adantr 472 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
133132zred 11645 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
134 0re 10203 . . . . . . . . 9 0 ∈ ℝ
135 ltnle 10280 . . . . . . . . 9 (((𝑁𝐾) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
136133, 134, 135sylancl 697 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
137131, 136mpbird 247 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 0)
138 0z 11551 . . . . . . . 8 0 ∈ ℤ
139 zltp1le 11590 . . . . . . . 8 (((𝑁𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
140132, 138, 139sylancl 697 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
141137, 140mpbid 222 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 0)
142 nn0ge0 11481 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
143142ad2antrr 764 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ≤ 𝑁)
144 0zd 11552 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ ℤ)
14575adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
146 elfz 12496 . . . . . . 7 ((0 ∈ ℤ ∧ ((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
147144, 145, 122, 146syl3anc 1463 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
148141, 143, 147mpbir2and 995 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ (((𝑁𝐾) + 1)...𝑁))
149 simpll 807 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
150 0cn 10195 . . . . . 6 0 ∈ ℂ
151 fvi 6405 . . . . . 6 (0 ∈ ℂ → ( I ‘0) = 0)
152150, 151mp1i 13 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ( I ‘0) = 0)
153109, 114, 116, 118, 148, 149, 152seqz 13014 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = 0)
154153oveq1d 6816 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)) = (0 / (!‘𝐾)))
155 bcval3 13258 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
15620, 155syl3an2 1497 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1571563expa 1111 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
158108, 154, 1573eqtr4rd 2793 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
159102, 158pm2.61dan 867 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1620  wcel 2127   class class class wbr 4792   I cid 5161  cfv 6037  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104   < clt 10237  cle 10238  cmin 10429   / cdiv 10847  cn 11183  0cn0 11455  cz 11540  cuz 11850  +crp 11996  ...cfz 12490  seqcseq 12966  !cfa 13225  Ccbc 13254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-fz 12491  df-seq 12967  df-fac 13226  df-bc 13255
This theorem is referenced by:  bcn2  13271
  Copyright terms: Public domain W3C validator