MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem2 Structured version   Visualization version   GIF version

Theorem bcthlem2 23340
Description: Lemma for bcth 23344. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem2 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Distinct variable groups:   𝑘,𝑛,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑛,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑛,𝑟,𝑥,𝑧   𝜑,𝑘,𝑛,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘,𝑛)   𝑅(𝑧,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem bcthlem2
StepHypRef Expression
1 bcthlem.11 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 fvoveq1 6815 . . . . . . 7 (𝑘 = 𝑛 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑛 + 1)))
3 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
4 fveq2 6332 . . . . . . . 8 (𝑘 = 𝑛 → (𝑔𝑘) = (𝑔𝑛))
53, 4oveq12d 6810 . . . . . . 7 (𝑘 = 𝑛 → (𝑘𝐹(𝑔𝑘)) = (𝑛𝐹(𝑔𝑛)))
62, 5eleq12d 2843 . . . . . 6 (𝑘 = 𝑛 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛))))
76rspccva 3457 . . . . 5 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
81, 7sylan 561 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
9 bcthlem.9 . . . . . 6 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
109ffvelrnda 6502 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑔𝑛) ∈ (𝑋 × ℝ+))
11 bcth.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
12 bcthlem.4 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
13 bcthlem.5 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1411, 12, 13bcthlem1 23339 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑔𝑛) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
1514expr 444 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔𝑛) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))))
1610, 15mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
178, 16mpbid 222 . . 3 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))
18 cmetmet 23302 . . . . . . . . . . . . 13 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
1912, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
20 metxmet 22358 . . . . . . . . . . . 12 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2119, 20syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝑋))
2211mopntop 22464 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2321, 22syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
2423adantr 466 . . . . . . . . 9 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝐽 ∈ Top)
25 xp1st 7346 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋)
26 xp2nd 7347 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ+)
2726rpxrd 12075 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)
2825, 27jca 495 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*))
29 blssm 22442 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
30293expb 1112 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
3121, 28, 30syl2an 575 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
32 1st2nd2 7353 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑛 + 1)) = ⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
3332fveq2d 6336 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩))
34 df-ov 6795 . . . . . . . . . . . 12 ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
3533, 34syl6reqr 2823 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3635adantl 467 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3711mopnuni 22465 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3821, 37syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3938adantr 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝑋 = 𝐽)
4031, 36, 393sstr3d 3794 . . . . . . . . 9 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽)
41 eqid 2770 . . . . . . . . . 10 𝐽 = 𝐽
4241sscls 21080 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
4324, 40, 42syl2anc 565 . . . . . . . 8 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
44 difss2 3888 . . . . . . . 8 (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
45 sstr2 3757 . . . . . . . 8 (((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4643, 44, 45syl2im 40 . . . . . . 7 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4746a1d 25 . . . . . 6 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))))
4847ex 397 . . . . 5 (𝜑 → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))))
49483impd 1440 . . . 4 (𝜑 → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
5049adantr 466 . . 3 ((𝜑𝑛 ∈ ℕ) → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
5117, 50mpd 15 . 2 ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
5251ralrimiva 3114 1 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  cdif 3718  wss 3721  cop 4320   cuni 4572   class class class wbr 4784  {copab 4844   × cxp 5247  wf 6027  cfv 6031  (class class class)co 6792  cmpt2 6794  1st c1st 7312  2nd c2nd 7313  1c1 10138   + caddc 10140  *cxr 10274   < clt 10275   / cdiv 10885  cn 11221  +crp 12034  ∞Metcxmt 19945  Metcme 19946  ballcbl 19947  MetOpencmopn 19950  Topctop 20917  Clsdccld 21040  clsccl 21042  CMetcms 23270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-bases 20970  df-cld 21043  df-cls 21045  df-cmet 23273
This theorem is referenced by:  bcthlem3  23341  bcthlem4  23342
  Copyright terms: Public domain W3C validator