![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bcth2 | Structured version Visualization version GIF version |
Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.) |
Ref | Expression |
---|---|
bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
bcth2 | ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 807 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋)) | |
2 | simprl 811 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
3 | cmetmet 23304 | . . . . . . . 8 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
4 | 3 | ad2antrr 764 | . . . . . . 7 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
5 | metxmet 22360 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
6 | bcth.2 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
7 | 6 | mopntopon 22465 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | 4, 5, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
9 | topontop 20940 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top) |
11 | simprr 813 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 = 𝑋) | |
12 | toponmax 20952 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ∈ 𝐽) |
14 | 11, 13 | eqeltrd 2839 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 ∈ 𝐽) |
15 | isopn3i 21108 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) | |
16 | 10, 14, 15 | syl2anc 696 | . . . 4 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) |
17 | 16, 11 | eqtrd 2794 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = 𝑋) |
18 | simplr 809 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅) | |
19 | 17, 18 | eqnetrd 2999 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) |
20 | 6 | bcth 23346 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
21 | 1, 2, 19, 20 | syl3anc 1477 | 1 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ∅c0 4058 ∪ cuni 4588 ran crn 5267 ⟶wf 6045 ‘cfv 6049 ℕcn 11232 ∞Metcxmt 19953 Metcme 19954 MetOpencmopn 19958 Topctop 20920 TopOnctopon 20937 Clsdccld 21042 intcnt 21043 CMetcms 23272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-dc 9480 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ico 12394 df-rest 16305 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-top 20921 df-topon 20938 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lm 21255 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-cfil 23273 df-cau 23274 df-cmet 23275 |
This theorem is referenced by: ubthlem1 28056 |
Copyright terms: Public domain | W3C validator |