Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcprod Structured version   Visualization version   GIF version

Theorem bcprod 31852
Description: A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.)
Assertion
Ref Expression
bcprod (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Distinct variable group:   𝑘,𝑁

Proof of Theorem bcprod
Dummy variables 𝑛 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6772 . . . . . . 7 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
2 1m1e0 11202 . . . . . . 7 (1 − 1) = 0
31, 2syl6eq 2774 . . . . . 6 (𝑚 = 1 → (𝑚 − 1) = 0)
43oveq2d 6781 . . . . 5 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
5 fz10 12476 . . . . 5 (1...0) = ∅
64, 5syl6eq 2774 . . . 4 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
73oveq1d 6780 . . . . 5 (𝑚 = 1 → ((𝑚 − 1)C𝑘) = (0C𝑘))
87adantr 472 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (0C𝑘))
96, 8prodeq12dv 14776 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ ∅ (0C𝑘))
10 oveq2 6773 . . . . . 6 (𝑚 = 1 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 1))
1110oveq2d 6781 . . . . 5 (𝑚 = 1 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
1211adantr 472 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
136, 12prodeq12dv 14776 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)))
149, 13eqeq12d 2739 . 2 (𝑚 = 1 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))))
15 oveq1 6772 . . . . 5 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
1615oveq2d 6781 . . . 4 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
1715oveq1d 6780 . . . . 5 (𝑚 = 𝑛 → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1817adantr 472 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1916, 18prodeq12dv 14776 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘))
20 oveq2 6773 . . . . . 6 (𝑚 = 𝑛 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑛))
2120oveq2d 6781 . . . . 5 (𝑚 = 𝑛 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2221adantr 472 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2316, 22prodeq12dv 14776 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
2419, 23eqeq12d 2739 . 2 (𝑚 = 𝑛 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))))
25 oveq1 6772 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
2625oveq2d 6781 . . . 4 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
2725oveq1d 6780 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2827adantr 472 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2926, 28prodeq12dv 14776 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘))
30 oveq2 6773 . . . . . 6 (𝑚 = (𝑛 + 1) → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − (𝑛 + 1)))
3130oveq2d 6781 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3231adantr 472 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3326, 32prodeq12dv 14776 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3429, 33eqeq12d 2739 . 2 (𝑚 = (𝑛 + 1) → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
35 oveq1 6772 . . . . 5 (𝑚 = 𝑁 → (𝑚 − 1) = (𝑁 − 1))
3635oveq2d 6781 . . . 4 (𝑚 = 𝑁 → (1...(𝑚 − 1)) = (1...(𝑁 − 1)))
3735oveq1d 6780 . . . . 5 (𝑚 = 𝑁 → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3837adantr 472 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3936, 38prodeq12dv 14776 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘))
40 oveq2 6773 . . . . . 6 (𝑚 = 𝑁 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑁))
4140oveq2d 6781 . . . . 5 (𝑚 = 𝑁 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4241adantr 472 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4336, 42prodeq12dv 14776 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
4439, 43eqeq12d 2739 . 2 (𝑚 = 𝑁 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))))
45 prod0 14793 . . 3 𝑘 ∈ ∅ (0C𝑘) = 1
46 prod0 14793 . . 3 𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)) = 1
4745, 46eqtr4i 2749 . 2 𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))
48 simpr 479 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
4948oveq1d 6780 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
50 nncn 11141 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
51 1cnd 10169 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℂ)
5250, 51pncand 10506 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
5352oveq2d 6781 . . . . . . 7 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
5452oveq1d 6780 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5554adantr 472 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...((𝑛 + 1) − 1))) → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5653, 55prodeq12dv 14776 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘))
57 elnnuz 11838 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
5857biimpi 206 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
59 nnnn0 11412 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
60 elfzelz 12456 . . . . . . . . 9 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
61 bccl 13224 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
6259, 60, 61syl2an 495 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℕ0)
6362nn0cnd 11466 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℂ)
64 oveq2 6773 . . . . . . 7 (𝑘 = 𝑛 → (𝑛C𝑘) = (𝑛C𝑛))
6558, 63, 64fprodm1 14817 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)))
66 bcnn 13214 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛C𝑛) = 1)
6759, 66syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛C𝑛) = 1)
6867oveq2d 6781 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1))
69 fzfid 12887 . . . . . . . . 9 (𝑛 ∈ ℕ → (1...(𝑛 − 1)) ∈ Fin)
70 elfzelz 12456 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℤ)
7159, 70, 61syl2an 495 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℕ0)
7271nn0cnd 11466 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℂ)
7369, 72fprodcl 14802 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) ∈ ℂ)
7473mulid1d 10170 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘))
75 fz1ssfz0 12550 . . . . . . . . . . 11 (1...(𝑛 − 1)) ⊆ (0...(𝑛 − 1))
7675sseli 3705 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ (0...(𝑛 − 1)))
77 bcm1nt 31851 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7876, 77sylan2 492 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7978prodeq2dv 14773 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
80 nnm1nn0 11447 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
81 bccl 13224 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8280, 70, 81syl2an 495 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8382nn0cnd 11466 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℂ)
8450adantr 472 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℂ)
85 elfznn 12484 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℕ)
8685adantl 473 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℕ)
8786nnred 11148 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℝ)
8880adantr 472 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℕ0)
8988nn0red 11465 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℝ)
90 nnre 11140 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9190adantr 472 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℝ)
92 elfzle2 12459 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ≤ (𝑛 − 1))
9392adantl 473 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≤ (𝑛 − 1))
9491ltm1d 11069 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) < 𝑛)
9587, 89, 91, 93, 94lelttrd 10308 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 < 𝑛)
96 simpl 474 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℕ)
97 nnsub 11172 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9886, 96, 97syl2anc 696 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9995, 98mpbid 222 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℕ)
10099nncnd 11149 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℂ)
10199nnne0d 11178 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ≠ 0)
10284, 100, 101divcld 10914 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 / (𝑛𝑘)) ∈ ℂ)
10369, 83, 102fprodmul 14810 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))))
10469, 84, 100, 101fproddiv 14811 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
105 fzfi 12886 . . . . . . . . . . . . 13 (1...(𝑛 − 1)) ∈ Fin
106 fprodconst 14828 . . . . . . . . . . . . 13 (((1...(𝑛 − 1)) ∈ Fin ∧ 𝑛 ∈ ℂ) → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
107105, 50, 106sylancr 698 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
108 hashfz1 13249 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ0 → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
10980, 108syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
110109oveq2d 6781 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑(♯‘(1...(𝑛 − 1)))) = (𝑛↑(𝑛 − 1)))
111107, 110eqtr2d 2759 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑛)
112 fprodfac 14823 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
11380, 112syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
114 nnz 11512 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
115 1zzd 11521 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ∈ ℤ)
11680nn0zd 11593 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
117 elfznn 12484 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...(𝑛 − 1)) → 𝑗 ∈ ℕ)
118117adantl 473 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℕ)
119118nncnd 11149 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℂ)
120 id 22 . . . . . . . . . . . . 13 (𝑗 = (𝑛𝑘) → 𝑗 = (𝑛𝑘))
121114, 115, 116, 119, 120fprodrev 14827 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑗 ∈ (1...(𝑛 − 1))𝑗 = ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘))
12250, 51nncand 10510 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 − (𝑛 − 1)) = 1)
123122oveq1d 6780 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 − (𝑛 − 1))...(𝑛 − 1)) = (1...(𝑛 − 1)))
124123prodeq1d 14771 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
125113, 121, 1243eqtrd 2762 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
126111, 125oveq12d 6783 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
127104, 126eqtr4d 2761 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))))
128127oveq2d 6781 . . . . . . . 8 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
12979, 103, 1283eqtrd 2762 . . . . . . 7 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13068, 74, 1293eqtrd 2762 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13156, 65, 1303eqtrd 2762 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
132131adantr 472 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13353prodeq1d 14771 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
134 elfznn 12484 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
135134adantl 473 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
136135nncnd 11149 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ)
137135nnne0d 11178 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0)
138 2nn 11298 . . . . . . . . . . . 12 2 ∈ ℕ
139138a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 2 ∈ ℕ)
140139, 135nnmulcld 11181 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℕ)
141140nnzd 11594 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℤ)
142 peano2nn 11145 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
143142adantr 472 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℕ)
144143nnzd 11594 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℤ)
145141, 144zsubcld 11600 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((2 · 𝑘) − (𝑛 + 1)) ∈ ℤ)
146136, 137, 145expclzd 13128 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) ∈ ℂ)
147 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
148 oveq2 6773 . . . . . . . . 9 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
149148oveq1d 6780 . . . . . . . 8 (𝑘 = 𝑛 → ((2 · 𝑘) − (𝑛 + 1)) = ((2 · 𝑛) − (𝑛 + 1)))
150147, 149oveq12d 6783 . . . . . . 7 (𝑘 = 𝑛 → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (𝑛↑((2 · 𝑛) − (𝑛 + 1))))
15158, 146, 150fprodm1 14817 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))))
15286nncnd 11149 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℂ)
15386nnne0d 11178 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≠ 0)
154138a1i 11 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 2 ∈ ℕ)
155154, 86nnmulcld 11181 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℕ)
156155nnzd 11594 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℤ)
157114adantr 472 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℤ)
158156, 157zsubcld 11600 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((2 · 𝑘) − 𝑛) ∈ ℤ)
159152, 153, 158expclzd 13128 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
16069, 159, 152, 153fproddiv 14811 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
161155nncnd 11149 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℂ)
162 1cnd 10169 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 1 ∈ ℂ)
163161, 84, 162subsub4d 10536 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (((2 · 𝑘) − 𝑛) − 1) = ((2 · 𝑘) − (𝑛 + 1)))
164163oveq2d 6781 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
165152, 153, 158expm1d 13133 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
166164, 165eqtr3d 2760 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
167166prodeq2dv 14773 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
168 fprodfac 14823 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
16980, 168syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
170169oveq2d 6781 . . . . . . . . 9 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
171160, 167, 1703eqtr4d 2768 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))))
172138a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℕ)
173 id 22 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
174172, 173nnmulcld 11181 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
175174nncnd 11149 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
176175, 50, 51subsub4d 10536 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = ((2 · 𝑛) − (𝑛 + 1)))
177502timesd 11388 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) = (𝑛 + 𝑛))
178177oveq1d 6780 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = ((𝑛 + 𝑛) − 𝑛))
17950, 50pncand 10506 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛 + 𝑛) − 𝑛) = 𝑛)
180178, 179eqtrd 2758 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = 𝑛)
181180oveq1d 6780 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = (𝑛 − 1))
182176, 181eqtr3d 2760 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) − (𝑛 + 1)) = (𝑛 − 1))
183182oveq2d 6781 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑((2 · 𝑛) − (𝑛 + 1))) = (𝑛↑(𝑛 − 1)))
184171, 183oveq12d 6783 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))))
18569, 159fprodcl 14802 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
186 faccl 13185 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) ∈ ℕ)
18780, 186syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℕ)
188187nncnd 11149 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℂ)
18950, 80expcld 13123 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) ∈ ℂ)
190187nnne0d 11178 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ≠ 0)
191185, 188, 189, 190div32d 10937 . . . . . . 7 (𝑛 ∈ ℕ → ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
192184, 191eqtrd 2758 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
193133, 151, 1923eqtrd 2762 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
194193adantr 472 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
19549, 132, 1943eqtr4d 2768 . . 3 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
196195ex 449 . 2 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
19714, 24, 34, 44, 47, 196nnind 11151 1 (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  c0 4023   class class class wbr 4760  cfv 6001  (class class class)co 6765  Fincfn 8072  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  0cn0 11405  cz 11490  cuz 11800  ...cfz 12440  cexp 12975  !cfa 13175  Ccbc 13204  chash 13232  cprod 14755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-prod 14756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator