MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1m1 Structured version   Visualization version   GIF version

Theorem bcp1m1 13322
Description: Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcp1m1 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))

Proof of Theorem bcp1m1
StepHypRef Expression
1 peano2nn0 11546 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 nn0z 11613 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 11633 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 bccmpl 13311 . . 3 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))))
61, 4, 5syl2anc 696 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))))
7 nn0cn 11515 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 1cnd 10269 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
97, 8, 8pnncand 10644 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = (1 + 1))
10 df-2 11292 . . . . 5 2 = (1 + 1)
119, 10syl6eqr 2813 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = 2)
1211oveq2d 6831 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = ((𝑁 + 1)C2))
13 bcn2 13321 . . . . 5 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2))
141, 13syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2))
15 ax-1cn 10207 . . . . . . 7 1 ∈ ℂ
16 pncan 10500 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
177, 15, 16sylancl 697 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1817oveq2d 6831 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) · ((𝑁 + 1) − 1)) = ((𝑁 + 1) · 𝑁))
1918oveq1d 6830 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2) = (((𝑁 + 1) · 𝑁) / 2))
2014, 19eqtrd 2795 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · 𝑁) / 2))
2112, 20eqtrd 2795 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = (((𝑁 + 1) · 𝑁) / 2))
226, 21eqtrd 2795 1 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140  (class class class)co 6815  cc 10147  1c1 10150   + caddc 10152   · cmul 10154  cmin 10479   / cdiv 10897  2c2 11283  0cn0 11505  cz 11590  Ccbc 13304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-seq 13017  df-fac 13276  df-bc 13305
This theorem is referenced by:  arisum  14812
  Copyright terms: Public domain W3C validator