MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcnp1n Structured version   Visualization version   GIF version

Theorem bcnp1n 13305
Description: Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcnp1n (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1))

Proof of Theorem bcnp1n
StepHypRef Expression
1 peano2nn0 11535 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 nn0z 11602 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 bccmpl 13300 . . 3 (((𝑁 + 1) ∈ ℕ0𝑁 ∈ ℤ) → ((𝑁 + 1)C𝑁) = ((𝑁 + 1)C((𝑁 + 1) − 𝑁)))
41, 2, 3syl2anc 573 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = ((𝑁 + 1)C((𝑁 + 1) − 𝑁)))
5 nn0cn 11504 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 ax-1cn 10196 . . . 4 1 ∈ ℂ
7 pncan2 10490 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
85, 6, 7sylancl 574 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 𝑁) = 1)
98oveq2d 6809 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − 𝑁)) = ((𝑁 + 1)C1))
10 bcn1 13304 . . 3 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C1) = (𝑁 + 1))
111, 10syl 17 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C1) = (𝑁 + 1))
124, 9, 113eqtrd 2809 1 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  (class class class)co 6793  cc 10136  1c1 10139   + caddc 10141  cmin 10468  0cn0 11494  cz 11579  Ccbc 13293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-seq 13009  df-fac 13265  df-bc 13294
This theorem is referenced by:  arisum  14799
  Copyright terms: Public domain W3C validator