Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Visualization version   GIF version

Theorem bcm1n 29888
Description: The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 13306 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → (((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))))
2 nnz 11600 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32zcnd 11684 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 467 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 1cnd 10257 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
64, 5npcand 10597 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
76oveq1d 6807 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1)C𝐾) = (𝑁C𝐾))
86oveq1d 6807 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) − 𝐾) = (𝑁𝐾))
96, 8oveq12d 6810 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾)) = (𝑁 / (𝑁𝐾)))
109oveq2d 6808 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
117, 10eqeq12d 2785 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
121, 11syl5ib 234 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (0...(𝑁 − 1)) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
13123impia 1108 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
14133anidm13 1529 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
15 elfznn0 12639 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℕ0)
1615adantr 466 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℕ0)
17 simpr 471 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1817nnnn0d 11552 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
19 elfzelz 12548 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℤ)
2019adantr 466 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
2120zred 11683 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
222adantl 467 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2322zred 11683 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
24 elfzle2 12551 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
2524adantr 466 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ≤ (𝑁 − 1))
26 zltlem1 11631 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2719, 2, 26syl2an 575 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2825, 27mpbird 247 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < 𝑁)
2921, 23, 28ltled 10386 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾𝑁)
30 elfz2nn0 12637 . . . . . . . 8 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
3116, 18, 29, 30syl3anbrc 1427 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (0...𝑁))
32 bcrpcl 13298 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
3331, 32syl 17 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℝ+)
3433rpcnd 12076 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℂ)
3519zcnd 11684 . . . . . . . 8 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℂ)
3635adantr 466 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
374, 36subcld 10593 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℂ)
3836, 4negsubdi2d 10609 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) = (𝑁𝐾))
3921, 23resubcld 10659 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℝ)
4039recnd 10269 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℂ)
414addid2d 10438 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (0 + 𝑁) = 𝑁)
4228, 41breqtrrd 4812 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < (0 + 𝑁))
43 0red 10242 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
4421, 23, 43ltsubaddd 10824 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝐾𝑁) < 0 ↔ 𝐾 < (0 + 𝑁)))
4542, 44mpbird 247 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) < 0)
4645lt0ne0d 10794 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ≠ 0)
4740, 46negne0d 10591 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) ≠ 0)
4838, 47eqnetrrd 3010 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ≠ 0)
494, 37, 48divcld 11002 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑁𝐾)) ∈ ℂ)
50 bcrpcl 13298 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5150adantr 466 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5251rpcnne0d 12083 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0))
53 divmul2 10890 . . . . 5 (((𝑁C𝐾) ∈ ℂ ∧ (𝑁 / (𝑁𝐾)) ∈ ℂ ∧ (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0)) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5434, 49, 52, 53syl3anc 1475 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5514, 54mpbird 247 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)))
5655oveq2d 6808 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (1 / (𝑁 / (𝑁𝐾))))
5751rpcnd 12076 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℂ)
58 bccl2 13313 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
5931, 58syl 17 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℕ)
6059nnne0d 11266 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ≠ 0)
61 bccl2 13313 . . . . 5 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℕ)
6261nnne0d 11266 . . . 4 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ≠ 0)
6362adantr 466 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ≠ 0)
6434, 57, 60, 63recdivd 11019 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (((𝑁 − 1)C𝐾) / (𝑁C𝐾)))
6517nnne0d 11266 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
664, 37, 65, 48recdivd 11019 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / (𝑁 / (𝑁𝐾))) = ((𝑁𝐾) / 𝑁))
6756, 64, 663eqtr3d 2812 1 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  (class class class)co 6792  cc 10135  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142   < clt 10275  cle 10276  cmin 10467  -cneg 10468   / cdiv 10885  cn 11221  0cn0 11493  cz 11578  +crp 12034  ...cfz 12532  Ccbc 13292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-seq 13008  df-fac 13264  df-bc 13293
This theorem is referenced by:  ballotlem2  30884
  Copyright terms: Public domain W3C validator