![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > baselsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.) |
Ref | Expression |
---|---|
baselsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . 2 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V) | |
2 | issiga 30483 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
3 | 2 | simplbda 655 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
4 | 3 | simp1d 1137 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → 𝐴 ∈ 𝑆) |
5 | 1, 4 | mpancom 706 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 ∖ cdif 3712 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 class class class wbr 4804 ‘cfv 6049 ωcom 7230 ≼ cdom 8119 sigAlgebracsiga 30479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-siga 30480 |
This theorem is referenced by: unielsiga 30500 sigaldsys 30531 cldssbrsiga 30559 1stmbfm 30631 2ndmbfm 30632 unveldomd 30786 probmeasb 30801 dstrvprob 30842 |
Copyright terms: Public domain | W3C validator |