Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem8 Structured version   Visualization version   GIF version

Theorem basellem8 24859
 Description: Lemma for basel 24861. The function 𝐹 of partial sums of the inverse squares is bounded below by 𝐽 and above by 𝐾, obtained by summing the inequality cot↑2𝑥 ≤ 1 / 𝑥↑2 ≤ csc↑2𝑥 = cot↑2𝑥 + 1 over the 𝑀 roots of the polynomial 𝑃, and applying the identity basellem5 24856. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basel.f 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
basel.h 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))
basel.j 𝐽 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))
basel.k 𝐾 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺))
basellem8.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem8 (𝑀 ∈ ℕ → ((𝐽𝑀) ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ (𝐾𝑀)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝐽   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem basellem8
Dummy variables 𝑘 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12812 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
2 pire 24255 . . . . . . . 8 π ∈ ℝ
3 basellem8.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
4 2nn 11223 . . . . . . . . . . 11 2 ∈ ℕ
5 nnmulcl 11081 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
64, 5mpan 706 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
76peano2nnd 11075 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
83, 7syl5eqel 2734 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
9 nndivre 11094 . . . . . . . 8 ((π ∈ ℝ ∧ 𝑁 ∈ ℕ) → (π / 𝑁) ∈ ℝ)
102, 8, 9sylancr 696 . . . . . . 7 (𝑀 ∈ ℕ → (π / 𝑁) ∈ ℝ)
1110resqcld 13075 . . . . . 6 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) ∈ ℝ)
1211adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((π / 𝑁)↑2) ∈ ℝ)
133basellem1 24852 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
14 tanrpcl 24301 . . . . . . . 8 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
1513, 14syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
1615rpred 11910 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ)
1715rpne0d 11915 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ≠ 0)
18 2z 11447 . . . . . . . 8 2 ∈ ℤ
19 znegcl 11450 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
2018, 19ax-mp 5 . . . . . . 7 -2 ∈ ℤ
2120a1i 11 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → -2 ∈ ℤ)
2216, 17, 21reexpclzd 13074 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℝ)
2312, 22remulcld 10108 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ∈ ℝ)
24 elfznn 12408 . . . . . . 7 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
2524adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℕ)
2625nnred 11073 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℝ)
2725nnne0d 11103 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ≠ 0)
2826, 27, 21reexpclzd 13074 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℝ)
2916recnd 10106 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
30 2nn0 11347 . . . . . . . 8 2 ∈ ℕ0
31 expneg 12908 . . . . . . . 8 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
3229, 30, 31sylancl 695 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
3332oveq2d 6706 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
3410recnd 10106 . . . . . . . . 9 (𝑀 ∈ ℕ → (π / 𝑁) ∈ ℂ)
3534sqcld 13046 . . . . . . . 8 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) ∈ ℂ)
3635adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((π / 𝑁)↑2) ∈ ℂ)
37 rpexpcl 12919 . . . . . . . . . 10 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
3815, 18, 37sylancl 695 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
3938rpred 11910 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ)
4039recnd 10106 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
4138rpne0d 11915 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
4236, 40, 41divrecd 10842 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)) = (((π / 𝑁)↑2) · (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
4333, 42eqtr4d 2688 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)))
4425nnrpd 11908 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℝ+)
45 rpexpcl 12919 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -2 ∈ ℤ) → (𝑘↑-2) ∈ ℝ+)
4644, 20, 45sylancl 695 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℝ+)
47 2cn 11129 . . . . . . . . . . . 12 2 ∈ ℂ
4847negnegi 10389 . . . . . . . . . . 11 --2 = 2
4948oveq2i 6701 . . . . . . . . . 10 (𝑘↑--2) = (𝑘↑2)
5025nncnd 11074 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℂ)
5150, 27, 21expnegd 13055 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑--2) = (1 / (𝑘↑-2)))
5249, 51syl5reqr 2700 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / (𝑘↑-2)) = (𝑘↑2))
5352oveq1d 6705 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((1 / (𝑘↑-2)) · ((π / 𝑁)↑2)) = ((𝑘↑2) · ((π / 𝑁)↑2)))
54 nncn 11066 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
55 nnne0 11091 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5620a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → -2 ∈ ℤ)
5754, 55, 56expclzd 13053 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘↑-2) ∈ ℂ)
5825, 57syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℂ)
5950, 27, 21expne0d 13054 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≠ 0)
6036, 58, 59divrec2d 10843 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) = ((1 / (𝑘↑-2)) · ((π / 𝑁)↑2)))
612recni 10090 . . . . . . . . . . . 12 π ∈ ℂ
6261a1i 11 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → π ∈ ℂ)
638nncnd 11074 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
648nnne0d 11103 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ≠ 0)
6563, 64jca 553 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
6665adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
67 divass 10741 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ π ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑘 · π) / 𝑁) = (𝑘 · (π / 𝑁)))
6850, 62, 66, 67syl3anc 1366 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) = (𝑘 · (π / 𝑁)))
6968oveq1d 6705 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) = ((𝑘 · (π / 𝑁))↑2))
7034adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (π / 𝑁) ∈ ℂ)
7150, 70sqmuld 13060 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · (π / 𝑁))↑2) = ((𝑘↑2) · ((π / 𝑁)↑2)))
7269, 71eqtrd 2685 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) = ((𝑘↑2) · ((π / 𝑁)↑2)))
7353, 60, 723eqtr4d 2695 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) = (((𝑘 · π) / 𝑁)↑2))
74 elioore 12243 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → ((𝑘 · π) / 𝑁) ∈ ℝ)
7513, 74syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℝ)
7675resqcld 13075 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) ∈ ℝ)
77 tangtx 24302 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → ((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)))
7813, 77syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)))
79 eliooord 12271 . . . . . . . . . . . . . 14 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < ((𝑘 · π) / 𝑁) ∧ ((𝑘 · π) / 𝑁) < (π / 2)))
8013, 79syl 17 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < ((𝑘 · π) / 𝑁) ∧ ((𝑘 · π) / 𝑁) < (π / 2)))
8180simpld 474 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < ((𝑘 · π) / 𝑁))
8275, 81elrpd 11907 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℝ+)
8382rpge0d 11914 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ ((𝑘 · π) / 𝑁))
8415rpge0d 11914 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (tan‘((𝑘 · π) / 𝑁)))
8575, 16, 83, 84lt2sqd 13083 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)) ↔ (((𝑘 · π) / 𝑁)↑2) < ((tan‘((𝑘 · π) / 𝑁))↑2)))
8678, 85mpbid 222 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) < ((tan‘((𝑘 · π) / 𝑁))↑2))
8776, 39, 86ltled 10223 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) ≤ ((tan‘((𝑘 · π) / 𝑁))↑2))
8873, 87eqbrtrd 4707 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) ≤ ((tan‘((𝑘 · π) / 𝑁))↑2))
8912, 46, 38, 88lediv23d 11976 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)) ≤ (𝑘↑-2))
9043, 89eqbrtrd 4707 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ≤ (𝑘↑-2))
911, 23, 28, 90fsumle 14575 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ≤ Σ𝑘 ∈ (1...𝑀)(𝑘↑-2))
92 oveq2 6698 . . . . . . . . . . 11 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
9392oveq1d 6705 . . . . . . . . . 10 (𝑛 = 𝑀 → ((2 · 𝑛) + 1) = ((2 · 𝑀) + 1))
9493, 3syl6eqr 2703 . . . . . . . . 9 (𝑛 = 𝑀 → ((2 · 𝑛) + 1) = 𝑁)
9594oveq2d 6706 . . . . . . . 8 (𝑛 = 𝑀 → (1 / ((2 · 𝑛) + 1)) = (1 / 𝑁))
9695oveq2d 6706 . . . . . . 7 (𝑛 = 𝑀 → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / 𝑁)))
9796oveq2d 6706 . . . . . 6 (𝑛 = 𝑀 → (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) = (((π↑2) / 6) · (1 − (1 / 𝑁))))
9895oveq2d 6706 . . . . . . 7 (𝑛 = 𝑀 → (-2 · (1 / ((2 · 𝑛) + 1))) = (-2 · (1 / 𝑁)))
9998oveq2d 6706 . . . . . 6 (𝑛 = 𝑀 → (1 + (-2 · (1 / ((2 · 𝑛) + 1)))) = (1 + (-2 · (1 / 𝑁))))
10097, 99oveq12d 6708 . . . . 5 (𝑛 = 𝑀 → ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))))
101 basel.j . . . . . 6 𝐽 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))
102 nnex 11064 . . . . . . . . 9 ℕ ∈ V
103102a1i 11 . . . . . . . 8 (⊤ → ℕ ∈ V)
104 ovexd 6720 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V)
105 ovexd 6720 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 + (-2 · (1 / ((2 · 𝑛) + 1)))) ∈ V)
106 basel.h . . . . . . . . 9 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))
1072resqcli 12989 . . . . . . . . . . . 12 (π↑2) ∈ ℝ
108 6re 11139 . . . . . . . . . . . 12 6 ∈ ℝ
109 6nn 11227 . . . . . . . . . . . . 13 6 ∈ ℕ
110109nnne0i 11093 . . . . . . . . . . . 12 6 ≠ 0
111107, 108, 110redivcli 10830 . . . . . . . . . . 11 ((π↑2) / 6) ∈ ℝ
112111a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((π↑2) / 6) ∈ ℝ)
113 ovexd 6720 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / ((2 · 𝑛) + 1))) ∈ V)
114 fconstmpt 5197 . . . . . . . . . . 11 (ℕ × {((π↑2) / 6)}) = (𝑛 ∈ ℕ ↦ ((π↑2) / 6))
115114a1i 11 . . . . . . . . . 10 (⊤ → (ℕ × {((π↑2) / 6)}) = (𝑛 ∈ ℕ ↦ ((π↑2) / 6)))
116 1zzd 11446 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℤ)
117 ovexd 6720 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ V)
118 fconstmpt 5197 . . . . . . . . . . . 12 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
119118a1i 11 . . . . . . . . . . 11 (⊤ → (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1))
120 basel.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
121120a1i 11 . . . . . . . . . . 11 (⊤ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
122103, 116, 117, 119, 121offval2 6956 . . . . . . . . . 10 (⊤ → ((ℕ × {1}) ∘𝑓𝐺) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
123103, 112, 113, 115, 122offval2 6956 . . . . . . . . 9 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) = (𝑛 ∈ ℕ ↦ (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1))))))
124106, 123syl5eq 2697 . . . . . . . 8 (⊤ → 𝐻 = (𝑛 ∈ ℕ ↦ (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1))))))
125 ovexd 6720 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (-2 · (1 / ((2 · 𝑛) + 1))) ∈ V)
12647negcli 10387 . . . . . . . . . . 11 -2 ∈ ℂ
127126a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → -2 ∈ ℂ)
128 fconstmpt 5197 . . . . . . . . . . 11 (ℕ × {-2}) = (𝑛 ∈ ℕ ↦ -2)
129128a1i 11 . . . . . . . . . 10 (⊤ → (ℕ × {-2}) = (𝑛 ∈ ℕ ↦ -2))
130103, 127, 117, 129, 121offval2 6956 . . . . . . . . 9 (⊤ → ((ℕ × {-2}) ∘𝑓 · 𝐺) = (𝑛 ∈ ℕ ↦ (-2 · (1 / ((2 · 𝑛) + 1)))))
131103, 116, 125, 119, 130offval2 6956 . . . . . . . 8 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) = (𝑛 ∈ ℕ ↦ (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
132103, 104, 105, 124, 131offval2 6956 . . . . . . 7 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1)))))))
133132trud 1533 . . . . . 6 (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
134101, 133eqtri 2673 . . . . 5 𝐽 = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
135 ovex 6718 . . . . 5 ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) ∈ V
136100, 134, 135fvmpt 6321 . . . 4 (𝑀 ∈ ℕ → (𝐽𝑀) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))))
137111recni 10090 . . . . . . . 8 ((π↑2) / 6) ∈ ℂ
138137a1i 11 . . . . . . 7 (𝑀 ∈ ℕ → ((π↑2) / 6) ∈ ℂ)
1396nncnd 11074 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
140139, 63, 64divcld 10839 . . . . . . 7 (𝑀 ∈ ℕ → ((2 · 𝑀) / 𝑁) ∈ ℂ)
141 ax-1cn 10032 . . . . . . . . 9 1 ∈ ℂ
142 subcl 10318 . . . . . . . . 9 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑀) − 1) ∈ ℂ)
143139, 141, 142sylancl 695 . . . . . . . 8 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
144143, 63, 64divcld 10839 . . . . . . 7 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) / 𝑁) ∈ ℂ)
145138, 140, 144mulassd 10101 . . . . . 6 (𝑀 ∈ ℕ → ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · (((2 · 𝑀) − 1) / 𝑁)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))))
146 1cnd 10094 . . . . . . . . . 10 (𝑀 ∈ ℕ → 1 ∈ ℂ)
14763, 146, 63, 64divsubdird 10878 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 − 1) / 𝑁) = ((𝑁 / 𝑁) − (1 / 𝑁)))
1483oveq1i 6700 . . . . . . . . . . 11 (𝑁 − 1) = (((2 · 𝑀) + 1) − 1)
149 pncan 10325 . . . . . . . . . . . 12 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑀) + 1) − 1) = (2 · 𝑀))
150139, 141, 149sylancl 695 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − 1) = (2 · 𝑀))
151148, 150syl5eq 2697 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 − 1) = (2 · 𝑀))
152151oveq1d 6705 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 − 1) / 𝑁) = ((2 · 𝑀) / 𝑁))
15363, 64dividd 10837 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 / 𝑁) = 1)
154153oveq1d 6705 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) − (1 / 𝑁)) = (1 − (1 / 𝑁)))
155147, 152, 1543eqtr3rd 2694 . . . . . . . 8 (𝑀 ∈ ℕ → (1 − (1 / 𝑁)) = ((2 · 𝑀) / 𝑁))
156155oveq2d 6706 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (1 − (1 / 𝑁))) = (((π↑2) / 6) · ((2 · 𝑀) / 𝑁)))
157126a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → -2 ∈ ℂ)
15863, 157, 63, 64divdird 10877 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 + -2) / 𝑁) = ((𝑁 / 𝑁) + (-2 / 𝑁)))
159 negsub 10367 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + -2) = (𝑁 − 2))
16063, 47, 159sylancl 695 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 + -2) = (𝑁 − 2))
161 df-2 11117 . . . . . . . . . . . 12 2 = (1 + 1)
1623, 161oveq12i 6702 . . . . . . . . . . 11 (𝑁 − 2) = (((2 · 𝑀) + 1) − (1 + 1))
163139, 146, 146pnpcan2d 10468 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − (1 + 1)) = ((2 · 𝑀) − 1))
164162, 163syl5eq 2697 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 − 2) = ((2 · 𝑀) − 1))
165160, 164eqtrd 2685 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 + -2) = ((2 · 𝑀) − 1))
166165oveq1d 6705 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 + -2) / 𝑁) = (((2 · 𝑀) − 1) / 𝑁))
167157, 63, 64divrecd 10842 . . . . . . . . 9 (𝑀 ∈ ℕ → (-2 / 𝑁) = (-2 · (1 / 𝑁)))
168153, 167oveq12d 6708 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) + (-2 / 𝑁)) = (1 + (-2 · (1 / 𝑁))))
169158, 166, 1683eqtr3rd 2694 . . . . . . 7 (𝑀 ∈ ℕ → (1 + (-2 · (1 / 𝑁))) = (((2 · 𝑀) − 1) / 𝑁))
170156, 169oveq12d 6708 . . . . . 6 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · (((2 · 𝑀) − 1) / 𝑁)))
1718nnsqcld 13069 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁↑2) ∈ ℕ)
172171nncnd 11074 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) ∈ ℂ)
173 6cn 11140 . . . . . . . . . 10 6 ∈ ℂ
174 mulcom 10060 . . . . . . . . . 10 (((𝑁↑2) ∈ ℂ ∧ 6 ∈ ℂ) → ((𝑁↑2) · 6) = (6 · (𝑁↑2)))
175172, 173, 174sylancl 695 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁↑2) · 6) = (6 · (𝑁↑2)))
176175oveq2d 6706 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
177107recni 10090 . . . . . . . . . 10 (π↑2) ∈ ℂ
178177a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → (π↑2) ∈ ℂ)
179139, 143mulcld 10098 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
180171nnne0d 11103 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) ≠ 0)
181172, 180jca 553 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))
182173, 110pm3.2i 470 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 ≠ 0)
183182a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → (6 ∈ ℂ ∧ 6 ≠ 0))
184 divmuldiv 10763 . . . . . . . . 9 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ) ∧ (((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0) ∧ (6 ∈ ℂ ∧ 6 ≠ 0))) → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)))
185178, 179, 181, 183, 184syl22anc 1367 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)))
186 divmuldiv 10763 . . . . . . . . 9 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ) ∧ ((6 ∈ ℂ ∧ 6 ≠ 0) ∧ ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))) → (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
187178, 179, 183, 181, 186syl22anc 1367 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
188176, 185, 1873eqtr4d 2695 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))))
18961a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → π ∈ ℂ)
190189, 63, 64sqdivd 13061 . . . . . . . 8 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) = ((π↑2) / (𝑁↑2)))
191190oveq1d 6705 . . . . . . 7 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
192139, 63, 143, 63, 64, 64divmuldivd 10880 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁 · 𝑁)))
19363sqvald 13045 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) = (𝑁 · 𝑁))
194193oveq2d 6706 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁 · 𝑁)))
195192, 194eqtr4d 2688 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2)))
196195oveq2d 6706 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))) = (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))))
197188, 191, 1963eqtr4d 2695 . . . . . 6 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))))
198145, 170, 1973eqtr4d 2695 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
199 eqid 2651 . . . . . . 7 (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑥𝑗))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑥𝑗)))
200 eqid 2651 . . . . . . 7 (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
2013, 199, 200basellem5 24856 . . . . . 6 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
202201oveq2d 6706 . . . . 5 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
203198, 202eqtr4d 2688 . . . 4 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)))
20422recnd 10106 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ)
2051, 35, 204fsummulc2 14560 . . . 4 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)))
206136, 203, 2053eqtrd 2689 . . 3 (𝑀 ∈ ℕ → (𝐽𝑀) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)))
207 oveq1 6697 . . . . . . 7 (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2))
208 eqid 2651 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2))
209 ovex 6718 . . . . . . 7 (𝑘↑-2) ∈ V
210207, 208, 209fvmpt 6321 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
21125, 210syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
212 id 22 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
213 nnuz 11761 . . . . . 6 ℕ = (ℤ‘1)
214212, 213syl6eleq 2740 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
215211, 214, 58fsumser 14505 . . . 4 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(𝑘↑-2) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))‘𝑀))
216 basel.f . . . . 5 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
217216fveq1i 6230 . . . 4 (𝐹𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))‘𝑀)
218215, 217syl6reqr 2704 . . 3 (𝑀 ∈ ℕ → (𝐹𝑀) = Σ𝑘 ∈ (1...𝑀)(𝑘↑-2))
21991, 206, 2183brtr4d 4717 . 2 (𝑀 ∈ ℕ → (𝐽𝑀) ≤ (𝐹𝑀))
22075resincld 14917 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ)
221 sincosq1sgn 24295 . . . . . . . . 9 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑘 · π) / 𝑁)) ∧ 0 < (cos‘((𝑘 · π) / 𝑁))))
22213, 221syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < (sin‘((𝑘 · π) / 𝑁)) ∧ 0 < (cos‘((𝑘 · π) / 𝑁))))
223222simpld 474 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < (sin‘((𝑘 · π) / 𝑁)))
224223gt0ne0d 10630 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ≠ 0)
225220, 224, 21reexpclzd 13074 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) ∈ ℝ)
22612, 225remulcld 10108 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) ∈ ℝ)
227 sinltx 14963 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ ℝ+ → (sin‘((𝑘 · π) / 𝑁)) < ((𝑘 · π) / 𝑁))
22882, 227syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) < ((𝑘 · π) / 𝑁))
229220, 75, 228ltled 10223 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ≤ ((𝑘 · π) / 𝑁))
230 0re 10078 . . . . . . . . . . 11 0 ∈ ℝ
231 ltle 10164 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ) → (0 < (sin‘((𝑘 · π) / 𝑁)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁))))
232230, 220, 231sylancr 696 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < (sin‘((𝑘 · π) / 𝑁)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁))))
233223, 232mpd 15 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁)))
234220, 75, 233, 83le2sqd 13084 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁)) ≤ ((𝑘 · π) / 𝑁) ↔ ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((𝑘 · π) / 𝑁)↑2)))
235229, 234mpbid 222 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((𝑘 · π) / 𝑁)↑2))
236235, 73breqtrrd 4713 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2)))
237220resqcld 13075 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ)
238237, 12, 46lemuldiv2d 11960 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘↑-2) · ((sin‘((𝑘 · π) / 𝑁))↑2)) ≤ ((π / 𝑁)↑2) ↔ ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2))))
239220, 223elrpd 11907 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
240 rpexpcl 12919 . . . . . . . . 9 (((sin‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
241239, 18, 240sylancl 695 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
24228, 12, 241lemuldivd 11959 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘↑-2) · ((sin‘((𝑘 · π) / 𝑁))↑2)) ≤ ((π / 𝑁)↑2) ↔ (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
243238, 242bitr3d 270 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2)) ↔ (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
244236, 243mpbid 222 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
245220recnd 10106 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℂ)
246 expneg 12908 . . . . . . . 8 (((sin‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
247245, 30, 246sylancl 695 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
248247oveq2d 6706 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (1 / ((sin‘((𝑘 · π) / 𝑁))↑2))))
249237recnd 10106 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
250241rpne0d 11915 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
25136, 249, 250divrecd 10842 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (((π / 𝑁)↑2) · (1 / ((sin‘((𝑘 · π) / 𝑁))↑2))))
252248, 251eqtr4d 2688 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
253244, 252breqtrrd 4713 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≤ (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
2541, 28, 226, 253fsumle 14575 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(𝑘↑-2) ≤ Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
25595oveq2d 6706 . . . . . 6 (𝑛 = 𝑀 → (1 + (1 / ((2 · 𝑛) + 1))) = (1 + (1 / 𝑁)))
25697, 255oveq12d 6708 . . . . 5 (𝑛 = 𝑀 → ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))))
257 basel.k . . . . . 6 𝐾 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺))
258 ovexd 6720 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 + (1 / ((2 · 𝑛) + 1))) ∈ V)
259103, 116, 117, 119, 121offval2 6956 . . . . . . . 8 (⊤ → ((ℕ × {1}) ∘𝑓 + 𝐺) = (𝑛 ∈ ℕ ↦ (1 + (1 / ((2 · 𝑛) + 1)))))
260103, 104, 258, 124, 259offval2 6956 . . . . . . 7 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1))))))
261260trud 1533 . . . . . 6 (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))))
262257, 261eqtri 2673 . . . . 5 𝐾 = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))))
263 ovex 6718 . . . . 5 ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) ∈ V
264256, 262, 263fvmpt 6321 . . . 4 (𝑀 ∈ ℕ → (𝐾𝑀) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))))
265 peano2cn 10246 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
26663, 265syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
267266, 63, 64divcld 10839 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
268138, 140, 267mulassd 10101 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · ((𝑁 + 1) / 𝑁)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))))
26963, 146, 63, 64divdird 10877 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁 + 1) / 𝑁) = ((𝑁 / 𝑁) + (1 / 𝑁)))
270153oveq1d 6705 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) + (1 / 𝑁)) = (1 + (1 / 𝑁)))
271269, 270eqtr2d 2686 . . . . . 6 (𝑀 ∈ ℕ → (1 + (1 / 𝑁)) = ((𝑁 + 1) / 𝑁))
272156, 271oveq12d 6708 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) = ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · ((𝑁 + 1) / 𝑁)))
273175oveq2d 6706 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
274139, 266mulcld 10098 . . . . . . . 8 (𝑀 ∈ ℕ → ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ)
275 divmuldiv 10763 . . . . . . . 8 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ) ∧ (((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0) ∧ (6 ∈ ℂ ∧ 6 ≠ 0))) → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)))
276178, 274, 181, 183, 275syl22anc 1367 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)))
277 divmuldiv 10763 . . . . . . . 8 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ) ∧ ((6 ∈ ℂ ∧ 6 ≠ 0) ∧ ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))) → (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
278178, 274, 183, 181, 277syl22anc 1367 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
279273, 276, 2783eqtr4d 2695 . . . . . 6 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))))
28075recoscld 14918 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ∈ ℝ)
281280recnd 10106 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ∈ ℂ)
282281sqcld 13046 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((cos‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
283249, 282, 249, 250divdird 10877 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = ((((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) + (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
28475recnd 10106 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℂ)
285 sincossq 14950 . . . . . . . . . . . . . 14 (((𝑘 · π) / 𝑁) ∈ ℂ → (((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) = 1)
286284, 285syl 17 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) = 1)
287286oveq1d 6705 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
288249, 250dividd 10837 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = 1)
289222simprd 478 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < (cos‘((𝑘 · π) / 𝑁)))
290289gt0ne0d 10630 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ≠ 0)
291 tanval 14902 . . . . . . . . . . . . . . . . . 18 ((((𝑘 · π) / 𝑁) ∈ ℂ ∧ (cos‘((𝑘 · π) / 𝑁)) ≠ 0) → (tan‘((𝑘 · π) / 𝑁)) = ((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁))))
292284, 290, 291syl2anc 694 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) = ((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁))))
293292oveq1d 6705 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) = (((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁)))↑2))
294245, 281, 290sqdivd 13061 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁)))↑2) = (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2)))
295293, 294eqtrd 2685 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) = (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2)))
296295oveq2d 6706 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)) = (1 / (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2))))
297 sqne0 12970 . . . . . . . . . . . . . . . . 17 ((cos‘((𝑘 · π) / 𝑁)) ∈ ℂ → (((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0 ↔ (cos‘((𝑘 · π) / 𝑁)) ≠ 0))
298281, 297syl 17 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0 ↔ (cos‘((𝑘 · π) / 𝑁)) ≠ 0))
299290, 298mpbird 247 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
300249, 282, 250, 299recdivd 10856 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2))) = (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
30132, 296, 3003eqtrrd 2690 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
302288, 301oveq12d 6708 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) + (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))) = (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)))
303283, 287, 3023eqtr3d 2693 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)))
304 addcom 10260 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ) → (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
305141, 204, 304sylancr 696 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
306247, 303, 3053eqtrd 2689 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
307306sumeq2dv 14477 . . . . . . . . 9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = Σ𝑘 ∈ (1...𝑀)(((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
308 1cnd 10094 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 1 ∈ ℂ)
3091, 204, 308fsumadd 14514 . . . . . . . . 9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(((tan‘((𝑘 · π) / 𝑁))↑-2) + 1) = (Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) + Σ𝑘 ∈ (1...𝑀)1))
310 fsumconst 14566 . . . . . . . . . . . 12 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑀)1 = ((#‘(1...𝑀)) · 1))
3111, 141, 310sylancl 695 . . . . . . . . . . 11 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)1 = ((#‘(1...𝑀)) · 1))
312 nnnn0 11337 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
313 hashfz1 13174 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
314312, 313syl 17 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (#‘(1...𝑀)) = 𝑀)
315314oveq1d 6705 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((#‘(1...𝑀)) · 1) = (𝑀 · 1))
316 nncn 11066 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
317316mulid1d 10095 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
318311, 315, 3173eqtrd 2689 . . . . . . . . . 10 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)1 = 𝑀)
319201, 318oveq12d 6708 . . . . . . . . 9 (𝑀 ∈ ℕ → (Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) + Σ𝑘 ∈ (1...𝑀)1) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
320307, 309, 3193eqtrd 2689 . . . . . . . 8 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
321 3cn 11133 . . . . . . . . . . . . 13 3 ∈ ℂ
322321a1i 11 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 3 ∈ ℂ)
323139, 143, 322adddid 10102 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) · (((2 · 𝑀) − 1) + 3)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + ((2 · 𝑀) · 3)))
324 df-3 11118 . . . . . . . . . . . . . . . . 17 3 = (2 + 1)
325324oveq1i 6700 . . . . . . . . . . . . . . . 16 (3 − 1) = ((2 + 1) − 1)
32647, 141pncan3oi 10335 . . . . . . . . . . . . . . . 16 ((2 + 1) − 1) = 2
327325, 326, 1613eqtri 2677 . . . . . . . . . . . . . . 15 (3 − 1) = (1 + 1)
328327oveq2i 6701 . . . . . . . . . . . . . 14 ((2 · 𝑀) + (3 − 1)) = ((2 · 𝑀) + (1 + 1))
329139, 146, 322subadd23d 10452 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = ((2 · 𝑀) + (3 − 1)))
330139, 146, 146addassd 10100 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
331328, 329, 3303eqtr4a 2711 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = (((2 · 𝑀) + 1) + 1))
3323oveq1i 6700 . . . . . . . . . . . . 13 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
333331, 332syl6eqr 2703 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = (𝑁 + 1))
334333oveq2d 6706 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) · (((2 · 𝑀) − 1) + 3)) = ((2 · 𝑀) · (𝑁 + 1)))
335 2cnd 11131 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 2 ∈ ℂ)
336335, 316, 322mul32d 10284 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) · 3) = ((2 · 3) · 𝑀))
337 3t2e6 11217 . . . . . . . . . . . . . . 15 (3 · 2) = 6
338321, 47mulcomi 10084 . . . . . . . . . . . . . . 15 (3 · 2) = (2 · 3)
339337, 338eqtr3i 2675 . . . . . . . . . . . . . 14 6 = (2 · 3)
340339oveq1i 6700 . . . . . . . . . . . . 13 (6 · 𝑀) = ((2 · 3) · 𝑀)
341336, 340syl6eqr 2703 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) · 3) = (6 · 𝑀))
342341oveq2d 6706 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) · ((2 · 𝑀) − 1)) + ((2 · 𝑀) · 3)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)))
343323, 334, 3423eqtr3d 2693 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · 𝑀) · (𝑁 + 1)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)))
344343oveq1d 6705 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)) / 6))
345 mulcl 10058 . . . . . . . . . . 11 ((6 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (6 · 𝑀) ∈ ℂ)
346173, 316, 345sylancr 696 . . . . . . . . . 10 (𝑀 ∈ ℕ → (6 · 𝑀) ∈ ℂ)
347173a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ → 6 ∈ ℂ)
348110a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ → 6 ≠ 0)
349179, 346, 347, 348divdird 10877 . . . . . . . . 9 (𝑀 ∈ ℕ → ((((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + ((6 · 𝑀) / 6)))
350316, 347, 348divcan3d 10844 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((6 · 𝑀) / 6) = 𝑀)
351350oveq2d 6706 . . . . . . . . 9 (𝑀 ∈ ℕ → ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + ((6 · 𝑀) / 6)) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
352344, 349, 3513eqtrd 2689 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
353320, 352eqtr4d 2688 . . . . . . 7 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · (𝑁 + 1)) / 6))
354190, 353oveq12d 6708 . . . . . 6 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)))
355139, 63, 266, 63, 64, 64divmuldivd 10880 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁 · 𝑁)))
356193oveq2d 6706 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁 · 𝑁)))
357355, 356eqtr4d 2688 . . . . . . 7 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2)))
358357oveq2d 6706 . . . . . 6 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))) = (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))))
359279, 354, 3583eqtr4d 2695 . . . . 5 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))))
360268, 272, 3593eqtr4d 2695 . . . 4 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) = (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)))
361225recnd 10106 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ)
3621, 35, 361fsummulc2 14560 . . . 4 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
363264, 360, 3623eqtrd 2689 . . 3 (𝑀 ∈ ℕ → (𝐾𝑀) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
364254, 218, 3633brtr4d 4717 . 2 (𝑀 ∈ ℕ → (𝐹𝑀) ≤ (𝐾𝑀))
365219, 364jca 553 1 (𝑀 ∈ ℕ → ((𝐽𝑀) ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ (𝐾𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030   ≠ wne 2823  Vcvv 3231  {csn 4210   class class class wbr 4685   ↦ cmpt 4762   × cxp 5141  ‘cfv 5926  (class class class)co 6690   ∘𝑓 cof 6937  Fincfn 7997  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113   − cmin 10304  -cneg 10305   / cdiv 10722  ℕcn 11058  2c2 11108  3c3 11109  6c6 11112  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  (,)cioo 12213  ...cfz 12364  seqcseq 12841  ↑cexp 12900  Ccbc 13129  #chash 13157  Σcsu 14460  sincsin 14838  cosccos 14839  tanctan 14840  πcpi 14841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-tan 14846  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-0p 23482  df-limc 23675  df-dv 23676  df-ply 23989  df-idp 23990  df-coe 23991  df-dgr 23992  df-quot 24091 This theorem is referenced by:  basellem9  24860
 Copyright terms: Public domain W3C validator