MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baseid Structured version   Visualization version   GIF version

Theorem baseid 15966
Description: Utility theorem: index-independent form of df-base 15910. (Contributed by NM, 20-Oct-2012.)
Assertion
Ref Expression
baseid Base = Slot (Base‘ndx)

Proof of Theorem baseid
StepHypRef Expression
1 df-base 15910 . 2 Base = Slot 1
2 1nn 11069 . 2 1 ∈ ℕ
31, 2ndxid 15930 1 Base = Slot (Base‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  cfv 5926  1c1 9975  ndxcnx 15901  Slot cslot 15903  Basecbs 15904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rrecex 10046  ax-cnre 10047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-nn 11059  df-ndx 15907  df-slot 15908  df-base 15910
This theorem is referenced by:  ressbas  15977  opelstrbas  16025  1strbas  16027  2strbas  16031  2strbas1  16034  rngbase  16048  srngbase  16056  lmodbase  16065  ipsbase  16072  phlbase  16082  topgrpbas  16090  otpsbas  16099  otpsbasOLD  16103  odrngbas  16114  prdsval  16162  prdsbas  16164  imasbas  16219  oppcbas  16425  rescbas  16536  rescabs  16540  fucbas  16667  setcbas  16775  catcbas  16794  estrcbas  16812  xpcbas  16865  odubas  17180  ipobas  17202  grpss  17487  rmodislmod  18979  islidl  19259  lidlrsppropd  19278  rspsn  19302  psrbas  19426  cnfldbas  19798  thlbas  20088  matbas  20267  tuslem  22118  setsmsbas  22327  trkgbas  25389  eengbas  25906  setsvtx  25972  algbase  38065  cznrnglem  42278  cznabel  42279  rngcbasALTV  42308  ringcbasALTV  42371
  Copyright terms: Public domain W3C validator