MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  barbari Structured version   Visualization version   GIF version

Theorem barbari 2716
Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.)
Hypotheses
Ref Expression
barbari.maj 𝑥(𝜑𝜓)
barbari.min 𝑥(𝜒𝜑)
barbari.e 𝑥𝜒
Assertion
Ref Expression
barbari 𝑥(𝜒𝜓)

Proof of Theorem barbari
StepHypRef Expression
1 barbari.e . 2 𝑥𝜒
2 barbari.maj . . . . 5 𝑥(𝜑𝜓)
3 barbari.min . . . . 5 𝑥(𝜒𝜑)
42, 3barbara 2712 . . . 4 𝑥(𝜒𝜓)
54spi 2208 . . 3 (𝜒𝜓)
65ancli 538 . 2 (𝜒 → (𝜒𝜓))
71, 6eximii 1912 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629  wex 1852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853
This theorem is referenced by:  celaront  2717
  Copyright terms: Public domain W3C validator