![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrinv | Structured version Visualization version GIF version |
Description: 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrinv | ⊢ ◡𝑅 = 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . . . . 8 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . . . . 8 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . . . . 8 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . . . . 8 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . . . . 8 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . . . . . 8 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . . . . . 8 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrinv0 30925 | . . . . . . 7 ⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) → (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑))) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrinv0 30925 | . . . . . . 7 ⊢ ((𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑)) → (𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐))) |
13 | 11, 12 | impbii 199 | . . . . . 6 ⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑))) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑)))) |
15 | 14 | mptcnv 5693 | . . . 4 ⊢ (⊤ → ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑))) |
16 | 15 | trud 1642 | . . 3 ⊢ ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
17 | fveq2 6354 | . . . . 5 ⊢ (𝑑 = 𝑐 → (𝑆‘𝑑) = (𝑆‘𝑐)) | |
18 | id 22 | . . . . 5 ⊢ (𝑑 = 𝑐 → 𝑑 = 𝑐) | |
19 | 17, 18 | imaeq12d 5626 | . . . 4 ⊢ (𝑑 = 𝑐 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝑐) “ 𝑐)) |
20 | 19 | cbvmptv 4903 | . . 3 ⊢ (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
21 | 16, 20 | eqtri 2783 | . 2 ⊢ ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
22 | 10 | cnveqi 5453 | . 2 ⊢ ◡𝑅 = ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
23 | 21, 22, 10 | 3eqtr4i 2793 | 1 ⊢ ◡𝑅 = 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ⊤wtru 1633 ∈ wcel 2140 ∀wral 3051 {crab 3055 ∖ cdif 3713 ∩ cin 3715 ifcif 4231 𝒫 cpw 4303 class class class wbr 4805 ↦ cmpt 4882 ◡ccnv 5266 “ cima 5270 ‘cfv 6050 (class class class)co 6815 infcinf 8515 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 < clt 10287 ≤ cle 10288 − cmin 10479 / cdiv 10897 ℕcn 11233 ℤcz 11590 ...cfz 12540 ♯chash 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-hash 13333 |
This theorem is referenced by: ballotlem7 30928 |
Copyright terms: Public domain | W3C validator |