Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemii Structured version   Visualization version   GIF version

Theorem ballotlemii 30693
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemii ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemii
StepHypRef Expression
1 1e0p1 11590 . . . . . 6 1 = (0 + 1)
2 ax-1ne0 10043 . . . . . 6 1 ≠ 0
31, 2eqnetrri 2894 . . . . 5 (0 + 1) ≠ 0
43neii 2825 . . . 4 ¬ (0 + 1) = 0
5 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
6 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
7 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
8 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
9 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
10 eldifi 3765 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
11 1nn 11069 . . . . . . . . . 10 1 ∈ ℕ
1211a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
135, 6, 7, 8, 9, 10, 12ballotlemfp1 30681 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
1413simprd 478 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1)))
1514imp 444 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))
16 1m1e0 11127 . . . . . . . . 9 (1 − 1) = 0
1716fveq2i 6232 . . . . . . . 8 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
1817oveq1i 6700 . . . . . . 7 (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1)
1918a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1))
205, 6, 7, 8, 9ballotlemfval0 30685 . . . . . . . . 9 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2110, 20syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
2221adantr 480 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
2322oveq1d 6705 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) + 1) = (0 + 1))
2415, 19, 233eqtrrd 2690 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹𝐶)‘1))
2524eqeq1d 2653 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((0 + 1) = 0 ↔ ((𝐹𝐶)‘1) = 0))
264, 25mtbii 315 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ ((𝐹𝐶)‘1) = 0)
27 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
28 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
29 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
305, 6, 7, 8, 9, 27, 28, 29ballotlemiex 30691 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
3130simprd 478 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
3231ad2antrr 762 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
33 fveq2 6229 . . . . . 6 ((𝐼𝐶) = 1 → ((𝐹𝐶)‘(𝐼𝐶)) = ((𝐹𝐶)‘1))
3433eqeq1d 2653 . . . . 5 ((𝐼𝐶) = 1 → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
3534adantl 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
3632, 35mpbid 222 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘1) = 0)
3726, 36mtand 692 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) = 1)
3837neqned 2830 1 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  cdif 3604  cin 3606  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  infcinf 8388  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cmin 10304   / cdiv 10722  cn 11058  cz 11415  ...cfz 12364  #chash 13157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158
This theorem is referenced by:  ballotlem1c  30697
  Copyright terms: Public domain W3C validator