Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrceq Structured version   Visualization version   GIF version

Theorem ballotlemfrceq 30899
 Description: Value of 𝐹 for a reverse counting (𝑅‘𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrceq ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝐽,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrceq
StepHypRef Expression
1 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
8 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsel1i 30883 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
11 1zzd 11600 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ∈ ℤ)
121, 2, 3, 4, 5, 6, 7, 8ballotlemiex 30872 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312adantr 472 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1413simpld 477 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
15 elfzelz 12535 . . . . . . . . . 10 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
1614, 15syl 17 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℤ)
17 elfzuz3 12532 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
18 fzss2 12574 . . . . . . . . . . . . 13 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
1914, 17, 183syl 18 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
20 simpr 479 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
2119, 20sseldd 3745 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
221, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 30882 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2321, 22syldan 488 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
24 elfzelz 12535 . . . . . . . . . 10 (((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
2523, 24syl 17 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
26 fzsubel 12570 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) ∧ (((𝑆𝐶)‘𝐽) ∈ ℤ ∧ 1 ∈ ℤ)) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2711, 16, 25, 11, 26syl22anc 1478 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2810, 27mpbid 222 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1)))
29 1m1e0 11281 . . . . . . . 8 (1 − 1) = 0
3029oveq1i 6823 . . . . . . 7 ((1 − 1)...((𝐼𝐶) − 1)) = (0...((𝐼𝐶) − 1))
3128, 30syl6eleq 2849 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1)))
3212simpld 477 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
3332, 15syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
34 1zzd 11600 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
3533, 34zsubcld 11679 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
36 nnaddcl 11234 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
371, 2, 36mp2an 710 . . . . . . . . . . 11 (𝑀 + 𝑁) ∈ ℕ
3837nnzi 11593 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℤ
3938a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
40 elfzle2 12538 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
4132, 40syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
42 zlem1lt 11621 . . . . . . . . . . . 12 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4333, 39, 42syl2anc 696 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4435zred 11674 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
4539zred 11674 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
46 ltle 10318 . . . . . . . . . . . 12 ((((𝐼𝐶) − 1) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4744, 45, 46syl2anc 696 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4843, 47sylbid 230 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4941, 48mpd 15 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
50 eluz2 11885 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ (((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
5135, 39, 49, 50syl3anbrc 1429 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
52 fzss2 12574 . . . . . . . 8 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5351, 52syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5453sselda 3744 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
5531, 54syldan 488 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
56 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
57 ballotlemg . . . . . 6 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57ballotlemfg 30896 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
5955, 58syldan 488 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
601, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57ballotlemfrc 30897 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6159, 60oveq12d 6831 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
62 fzsplit3 29862 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6310, 62syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6463oveq2d 6829 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
65 fz1ssfz0 12629 . . . . . . . 8 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
6665sseli 3740 . . . . . . 7 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ (0...(𝑀 + 𝑁)))
671, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57ballotlemfg 30896 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6866, 67sylan2 492 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6914, 68syldan 488 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
7013simprd 482 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
7169, 70eqtr3d 2796 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = 0)
72 fzfi 12965 . . . . . . 7 (1...(𝑀 + 𝑁)) ∈ Fin
73 eldifi 3875 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
741, 2, 3ballotlemelo 30858 . . . . . . . . 9 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
7574simplbi 478 . . . . . . . 8 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
7673, 75syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
77 ssfi 8345 . . . . . . 7 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin)
7872, 76, 77sylancr 698 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ∈ Fin)
7978adantr 472 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ∈ Fin)
80 fzfid 12966 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(((𝑆𝐶)‘𝐽) − 1)) ∈ Fin)
81 fzfid 12966 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin)
8225zred 11674 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℝ)
83 ltm1 11055 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ ℝ → (((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽))
84 fzdisj 12561 . . . . . 6 ((((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
8582, 83, 843syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
861, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57, 79, 80, 81, 85ballotlemgun 30895 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
8764, 71, 863eqtr3rd 2803 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = 0)
8861, 87eqtrd 2794 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0)
8973adantr 472 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶𝑂)
9025, 11zsubcld 11679 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℤ)
911, 2, 3, 4, 5, 89, 90ballotlemfelz 30861 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℤ)
9291zcnd 11675 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ)
931, 2, 3, 4, 5, 6, 7, 8, 9, 56ballotlemro 30893 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
9493adantr 472 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
95 elfzelz 12535 . . . . . 6 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
9620, 95syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
971, 2, 3, 4, 5, 94, 96ballotlemfelz 30861 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℤ)
9897zcnd 11675 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ)
99 addeq0 29819 . . 3 ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ ∧ ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
10092, 98, 99syl2anc 696 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
10188, 100mpbid 222 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054   ∖ cdif 3712   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  ifcif 4230  𝒫 cpw 4302   class class class wbr 4804   ↦ cmpt 4881   “ cima 5269  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  Fincfn 8121  infcinf 8512  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266   ≤ cle 10267   − cmin 10458  -cneg 10459   / cdiv 10876  ℕcn 11212  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519  ♯chash 13311 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-hash 13312 This theorem is referenced by:  ballotlemfrcn0  30900
 Copyright terms: Public domain W3C validator