Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfmpn Structured version   Visualization version   GIF version

Theorem ballotlemfmpn 30530
Description: (𝐹𝐶) finishes counting at (𝑀𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfmpn (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfmpn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 nnaddcl 11027 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
81, 2, 7mp2an 707 . . . . 5 (𝑀 + 𝑁) ∈ ℕ
98nnzi 11386 . . . 4 (𝑀 + 𝑁) ∈ ℤ
109a1i 11 . . 3 (𝐶𝑂 → (𝑀 + 𝑁) ∈ ℤ)
111, 2, 3, 4, 5, 6, 10ballotlemfval 30525 . 2 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))))
12 ssrab2 3679 . . . . . . . . 9 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
133, 12eqsstri 3627 . . . . . . . 8 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
1413sseli 3591 . . . . . . 7 (𝐶𝑂𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)))
1514elpwid 4161 . . . . . 6 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
16 sseqin2 3809 . . . . . 6 (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1715, 16sylib 208 . . . . 5 (𝐶𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1817fveq2d 6182 . . . 4 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (#‘𝐶))
19 rabssab 3682 . . . . . . 7 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (#‘𝑐) = 𝑀}
2019sseli 3591 . . . . . 6 (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀})
2120, 3eleq2s 2717 . . . . 5 (𝐶𝑂𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀})
22 fveq2 6178 . . . . . . 7 (𝑏 = 𝐶 → (#‘𝑏) = (#‘𝐶))
2322eqeq1d 2622 . . . . . 6 (𝑏 = 𝐶 → ((#‘𝑏) = 𝑀 ↔ (#‘𝐶) = 𝑀))
24 fveq2 6178 . . . . . . . 8 (𝑐 = 𝑏 → (#‘𝑐) = (#‘𝑏))
2524eqeq1d 2622 . . . . . . 7 (𝑐 = 𝑏 → ((#‘𝑐) = 𝑀 ↔ (#‘𝑏) = 𝑀))
2625cbvabv 2745 . . . . . 6 {𝑐 ∣ (#‘𝑐) = 𝑀} = {𝑏 ∣ (#‘𝑏) = 𝑀}
2723, 26elab2g 3347 . . . . 5 (𝐶𝑂 → (𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀} ↔ (#‘𝐶) = 𝑀))
2821, 27mpbid 222 . . . 4 (𝐶𝑂 → (#‘𝐶) = 𝑀)
2918, 28eqtrd 2654 . . 3 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀)
30 fzfi 12754 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
31 hashssdif 13183 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)))
3230, 15, 31sylancr 694 . . . 4 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)))
338nnnn0i 11285 . . . . . 6 (𝑀 + 𝑁) ∈ ℕ0
34 hashfz1 13117 . . . . . 6 ((𝑀 + 𝑁) ∈ ℕ0 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3533, 34mp1i 13 . . . . 5 (𝐶𝑂 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3635, 28oveq12d 6653 . . . 4 (𝐶𝑂 → ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)) = ((𝑀 + 𝑁) − 𝑀))
371nncni 11015 . . . . . 6 𝑀 ∈ ℂ
382nncni 11015 . . . . . 6 𝑁 ∈ ℂ
39 pncan2 10273 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4037, 38, 39mp2an 707 . . . . 5 ((𝑀 + 𝑁) − 𝑀) = 𝑁
4140a1i 11 . . . 4 (𝐶𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4232, 36, 413eqtrd 2658 . . 3 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁)
4329, 42oveq12d 6653 . 2 (𝐶𝑂 → ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀𝑁))
4411, 43eqtrd 2654 1 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  {cab 2606  {crab 2913  cdif 3564  cin 3566  wss 3567  𝒫 cpw 4149  cmpt 4720  cfv 5876  (class class class)co 6635  Fincfn 7940  cc 9919  1c1 9922   + caddc 9924  cmin 10251   / cdiv 10669  cn 11005  0cn0 11277  cz 11362  ...cfz 12311  #chash 13100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101
This theorem is referenced by:  ballotlem5  30535
  Copyright terms: Public domain W3C validator