![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfelz | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
ballotlemfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑂) |
ballotlemfval.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
Ref | Expression |
---|---|
ballotlemfelz | ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotlemfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑂) | |
7 | ballotlemfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 30679 | . 2 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶)))) |
9 | fzfi 12811 | . . . . . 6 ⊢ (1...𝐽) ∈ Fin | |
10 | inss1 3866 | . . . . . 6 ⊢ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽) | |
11 | ssfi 8221 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∩ 𝐶) ∈ Fin) | |
12 | 9, 10, 11 | mp2an 708 | . . . . 5 ⊢ ((1...𝐽) ∩ 𝐶) ∈ Fin |
13 | hashcl 13185 | . . . . 5 ⊢ (((1...𝐽) ∩ 𝐶) ∈ Fin → (#‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (#‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0 |
15 | 14 | nn0zi 11440 | . . 3 ⊢ (#‘((1...𝐽) ∩ 𝐶)) ∈ ℤ |
16 | difss 3770 | . . . . . 6 ⊢ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽) | |
17 | ssfi 8221 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∖ 𝐶) ∈ Fin) | |
18 | 9, 16, 17 | mp2an 708 | . . . . 5 ⊢ ((1...𝐽) ∖ 𝐶) ∈ Fin |
19 | hashcl 13185 | . . . . 5 ⊢ (((1...𝐽) ∖ 𝐶) ∈ Fin → (#‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0) | |
20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (#‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0 |
21 | 20 | nn0zi 11440 | . . 3 ⊢ (#‘((1...𝐽) ∖ 𝐶)) ∈ ℤ |
22 | zsubcl 11457 | . . 3 ⊢ (((#‘((1...𝐽) ∩ 𝐶)) ∈ ℤ ∧ (#‘((1...𝐽) ∖ 𝐶)) ∈ ℤ) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) ∈ ℤ) | |
23 | 15, 21, 22 | mp2an 708 | . 2 ⊢ ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) ∈ ℤ |
24 | 8, 23 | syl6eqel 2738 | 1 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {crab 2945 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 𝒫 cpw 4191 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 1c1 9975 + caddc 9977 − cmin 10304 / cdiv 10722 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: ballotlemfc0 30682 ballotlemfcc 30683 ballotlemodife 30687 ballotlemic 30696 ballotlem1c 30697 ballotlemfrceq 30718 ballotlemfrcn0 30719 |
Copyright terms: Public domain | W3C validator |