Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemelo Structured version   Visualization version   GIF version

Theorem ballotlemelo 30889
Description: Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemelo (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem ballotlemelo
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . . 4 (𝑑 = 𝐶 → (♯‘𝑑) = (♯‘𝐶))
21eqeq1d 2773 . . 3 (𝑑 = 𝐶 → ((♯‘𝑑) = 𝑀 ↔ (♯‘𝐶) = 𝑀))
3 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 fveq2 6332 . . . . . 6 (𝑐 = 𝑑 → (♯‘𝑐) = (♯‘𝑑))
54eqeq1d 2773 . . . . 5 (𝑐 = 𝑑 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑑) = 𝑀))
65cbvrabv 3349 . . . 4 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀}
73, 6eqtri 2793 . . 3 𝑂 = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀}
82, 7elrab2 3518 . 2 (𝐶𝑂 ↔ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
9 ovex 6823 . . . 4 (1...(𝑀 + 𝑁)) ∈ V
109elpw2 4959 . . 3 (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝐶 ⊆ (1...(𝑀 + 𝑁)))
1110anbi1i 610 . 2 ((𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀) ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
128, 11bitri 264 1 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wcel 2145  {crab 3065  wss 3723  𝒫 cpw 4297  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141  cn 11222  ...cfz 12533  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-iota 5994  df-fv 6039  df-ov 6796
This theorem is referenced by:  ballotlemscr  30920  ballotlemro  30924  ballotlemfg  30927  ballotlemfrc  30928  ballotlemfrceq  30930  ballotlemrinv0  30934
  Copyright terms: Public domain W3C validator