Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem1 Structured version   Visualization version   GIF version

Theorem ballotlem1 30676
 Description: The size of the universe is a binomial coefficient. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlem1 (#‘𝑂) = ((𝑀 + 𝑁)C𝑀)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐

Proof of Theorem ballotlem1
StepHypRef Expression
1 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
21fveq2i 6232 . 2 (#‘𝑂) = (#‘{𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀})
3 fzfi 12811 . . 3 (1...(𝑀 + 𝑁)) ∈ Fin
4 ballotth.m . . . 4 𝑀 ∈ ℕ
54nnzi 11439 . . 3 𝑀 ∈ ℤ
6 hashbc 13275 . . 3 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((#‘(1...(𝑀 + 𝑁)))C𝑀) = (#‘{𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}))
73, 5, 6mp2an 708 . 2 ((#‘(1...(𝑀 + 𝑁)))C𝑀) = (#‘{𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀})
8 ballotth.n . . . . . 6 𝑁 ∈ ℕ
94, 8pm3.2i 470 . . . . 5 (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)
10 nnaddcl 11080 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
11 nnnn0 11337 . . . . 5 ((𝑀 + 𝑁) ∈ ℕ → (𝑀 + 𝑁) ∈ ℕ0)
129, 10, 11mp2b 10 . . . 4 (𝑀 + 𝑁) ∈ ℕ0
13 hashfz1 13174 . . . 4 ((𝑀 + 𝑁) ∈ ℕ0 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
1412, 13ax-mp 5 . . 3 (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)
1514oveq1i 6700 . 2 ((#‘(1...(𝑀 + 𝑁)))C𝑀) = ((𝑀 + 𝑁)C𝑀)
162, 7, 153eqtr2i 2679 1 (#‘𝑂) = ((𝑀 + 𝑁)C𝑀)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945  𝒫 cpw 4191  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  1c1 9975   + caddc 9977  ℕcn 11058  ℕ0cn0 11330  ℤcz 11415  ...cfz 12364  Ccbc 13129  #chash 13157 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-fac 13101  df-bc 13130  df-hash 13158 This theorem is referenced by:  ballotlem2  30678  ballotth  30727
 Copyright terms: Public domain W3C validator