![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | ibar 524 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
3 | 2 | bicomd 213 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
4 | 1, 3 | sylan9bb 736 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: pw2f1olem 8105 eluz 11739 elicc4 12278 s111 13432 limsupgle 14252 lo1resb 14339 o1resb 14341 isercolllem2 14440 divalgmodcl 15178 ismri2 16339 acsfiel2 16363 issect2 16461 eqglact 17692 eqgid 17693 cntzel 17802 dprdsubg 18469 subgdmdprd 18479 dprd2da 18487 dmdprdpr 18494 issubrg3 18856 ishil2 20111 obslbs 20122 iscld2 20880 isperf3 21005 cncnp2 21133 cnnei 21134 trfbas2 21694 flimrest 21834 flfnei 21842 fclsrest 21875 tsmssubm 21993 isnghm2 22575 isnghm3 22576 isnmhm2 22603 iscfil2 23110 caucfil 23127 ellimc2 23686 cnlimc 23697 lhop1 23822 dvfsumlem1 23834 fsumharmonic 24783 fsumvma 24983 fsumvma2 24984 vmasum 24986 chpchtsum 24989 chpub 24990 rpvmasum2 25246 dchrisum0lem1 25250 dirith 25263 uvtx2vtx1edg 26349 uvtx2vtx1edgb 26350 iscplgrnb 26368 frgr3v 27255 adjeu 28876 suppss3 29630 nndiffz1 29676 fsumcvg4 30124 qqhval2lem 30153 indpreima 30215 eulerpartlemf 30560 elorvc 30649 hashreprin 30826 neibastop3 32482 relowlpssretop 33342 sstotbnd2 33703 isbnd3b 33714 lshpkr 34722 isat2 34892 islln4 35111 islpln4 35135 islvol4 35178 islhp2 35601 pw2f1o2val2 37924 rfcnpre1 39492 rfcnpre2 39504 |
Copyright terms: Public domain | W3C validator |