Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem1 Structured version   Visualization version   GIF version

Theorem baerlem5alem1 37518
Description: Lemma for baerlem5a 37524. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
baerlem5a.a1 (𝜑𝑎𝐵)
baerlem5a.b1 (𝜑𝑏𝐵)
baerlem5a.d1 (𝜑𝑑𝐵)
baerlem5a.e1 (𝜑𝑒𝐵)
baerlem5a.j1 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
baerlem5a.j2 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
Assertion
Ref Expression
baerlem5alem1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))

Proof of Theorem baerlem5alem1
StepHypRef Expression
1 baerlem5a.j1 . . 3 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
2 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
3 baerlem3.t . . . . . 6 · = ( ·𝑠𝑊)
4 baerlem3.r . . . . . 6 𝑅 = (Scalar‘𝑊)
5 baerlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
6 baerlem3.m . . . . . 6 = (-g𝑊)
7 baerlem3.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lveclmod 19319 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
10 baerlem5a.a1 . . . . . 6 (𝜑𝑎𝐵)
11 baerlem3.x . . . . . 6 (𝜑𝑋𝑉)
12 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3735 . . . . . 6 (𝜑𝑌𝑉)
142, 3, 4, 5, 6, 9, 10, 11, 13lmodsubdi 19130 . . . . 5 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) (𝑎 · 𝑌)))
15 baerlem3.p . . . . . 6 + = (+g𝑊)
16 baerlem3.i . . . . . 6 𝐼 = (invg𝑅)
172, 4, 3, 5lmodvscl 19090 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑋𝑉) → (𝑎 · 𝑋) ∈ 𝑉)
189, 10, 11, 17syl3anc 1476 . . . . . 6 (𝜑 → (𝑎 · 𝑋) ∈ 𝑉)
192, 15, 6, 3, 4, 5, 16, 9, 10, 18, 13lmodsubvs 19129 . . . . 5 (𝜑 → ((𝑎 · 𝑋) (𝑎 · 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2014, 19eqtrd 2805 . . . 4 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2120oveq1d 6811 . . 3 (𝜑 → ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) = (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)))
224lmodring 19081 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
23 ringgrp 18760 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
249, 22, 233syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
255, 16grpinvcl 17675 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵) → (𝐼𝑎) ∈ 𝐵)
2624, 10, 25syl2anc 573 . . . . 5 (𝜑 → (𝐼𝑎) ∈ 𝐵)
272, 4, 3, 5lmodvscl 19090 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐼𝑎) ∈ 𝐵𝑌𝑉) → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
289, 26, 13, 27syl3anc 1476 . . . 4 (𝜑 → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
29 baerlem5a.b1 . . . . 5 (𝜑𝑏𝐵)
30 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3130eldifad 3735 . . . . 5 (𝜑𝑍𝑉)
322, 4, 3, 5lmodvscl 19090 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏𝐵𝑍𝑉) → (𝑏 · 𝑍) ∈ 𝑉)
339, 29, 31, 32syl3anc 1476 . . . 4 (𝜑 → (𝑏 · 𝑍) ∈ 𝑉)
342, 15lmodass 19088 . . . 4 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑋) ∈ 𝑉 ∧ ((𝐼𝑎) · 𝑌) ∈ 𝑉 ∧ (𝑏 · 𝑍) ∈ 𝑉)) → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
359, 18, 28, 33, 34syl13anc 1478 . . 3 (𝜑 → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
361, 21, 353eqtrd 2809 . 2 (𝜑𝑗 = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
372, 15lmodvacl 19087 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
389, 13, 31, 37syl3anc 1476 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
392, 4, 3, 5lmodvscl 19090 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
409, 10, 38, 39syl3anc 1476 . . . 4 (𝜑 → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
41 eqid 2771 . . . . 5 (invg𝑊) = (invg𝑊)
422, 15, 41, 6grpsubval 17673 . . . 4 (((𝑎 · 𝑋) ∈ 𝑉 ∧ (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉) → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
4318, 40, 42syl2anc 573 . . 3 (𝜑 → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
442, 3, 4, 5, 6, 9, 10, 11, 38lmodsubdi 19130 . . 3 (𝜑 → (𝑎 · (𝑋 (𝑌 + 𝑍))) = ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))))
452, 15, 4, 3, 5lmodvsdi 19096 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝑎) ∈ 𝐵𝑌𝑉𝑍𝑉)) → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
469, 26, 13, 31, 45syl13anc 1478 . . . . 5 (𝜑 → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
472, 4, 3, 41, 5, 16, 9, 38, 10lmodvsneg 19117 . . . . 5 (𝜑 → ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))) = ((𝐼𝑎) · (𝑌 + 𝑍)))
48 baerlem3.o . . . . . . . . . 10 0 = (0g𝑊)
49 baerlem3.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
50 baerlem5a.e1 . . . . . . . . . 10 (𝜑𝑒𝐵)
51 baerlem5a.d1 . . . . . . . . . . 11 (𝜑𝑑𝐵)
525, 16grpinvcl 17675 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
5324, 51, 52syl2anc 573 . . . . . . . . . 10 (𝜑 → (𝐼𝑑) ∈ 𝐵)
54 baerlem3.d . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
55 eqid 2771 . . . . . . . . . . . 12 (LSubSp‘𝑊) = (LSubSp‘𝑊)
562, 55, 49, 9, 13, 31lspprcl 19191 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
57 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
582, 15, 3, 4, 5, 49, 9, 26, 29, 13, 31lsppreli 19303 . . . . . . . . . . . 12 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
592, 15, 3, 4, 5, 49, 9, 50, 53, 13, 31lsppreli 19303 . . . . . . . . . . . 12 (𝜑 → ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
60 baerlem5a.j2 . . . . . . . . . . . . 13 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
612, 3, 4, 5, 6, 9, 51, 11, 31lmodsubdi 19130 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) (𝑑 · 𝑍)))
622, 4, 3, 5lmodvscl 19090 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑋𝑉) → (𝑑 · 𝑋) ∈ 𝑉)
639, 51, 11, 62syl3anc 1476 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 · 𝑋) ∈ 𝑉)
642, 15, 6, 3, 4, 5, 16, 9, 51, 63, 31lmodsubvs 19129 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑑 · 𝑋) (𝑑 · 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6561, 64eqtrd 2805 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6665oveq1d 6811 . . . . . . . . . . . . . 14 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)))
67 lmodabl 19120 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
687, 8, 673syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ Abel)
692, 4, 3, 5lmodvscl 19090 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑍𝑉) → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
709, 53, 31, 69syl3anc 1476 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
712, 4, 3, 5lmodvscl 19090 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑒𝐵𝑌𝑉) → (𝑒 · 𝑌) ∈ 𝑉)
729, 50, 13, 71syl3anc 1476 . . . . . . . . . . . . . . 15 (𝜑 → (𝑒 · 𝑌) ∈ 𝑉)
732, 15, 68, 63, 70, 72abl32 18421 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)))
742, 15lmodass 19088 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ ((𝑑 · 𝑋) ∈ 𝑉 ∧ (𝑒 · 𝑌) ∈ 𝑉 ∧ ((𝐼𝑑) · 𝑍) ∈ 𝑉)) → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
759, 63, 72, 70, 74syl13anc 1478 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7666, 73, 753eqtrd 2809 . . . . . . . . . . . . 13 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7760, 36, 763eqtr3d 2813 . . . . . . . . . . . 12 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
782, 15, 4, 5, 3, 55, 7, 56, 11, 57, 58, 59, 10, 51, 77lvecindp 19352 . . . . . . . . . . 11 (𝜑 → (𝑎 = 𝑑 ∧ (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7978simprd 483 . . . . . . . . . 10 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)))
802, 15, 4, 5, 3, 48, 49, 7, 12, 30, 26, 29, 50, 53, 54, 79lvecindp2 19353 . . . . . . . . 9 (𝜑 → ((𝐼𝑎) = 𝑒𝑏 = (𝐼𝑑)))
8180simprd 483 . . . . . . . 8 (𝜑𝑏 = (𝐼𝑑))
8278simpld 482 . . . . . . . . 9 (𝜑𝑎 = 𝑑)
8382fveq2d 6337 . . . . . . . 8 (𝜑 → (𝐼𝑎) = (𝐼𝑑))
8481, 83eqtr4d 2808 . . . . . . 7 (𝜑𝑏 = (𝐼𝑎))
8584oveq1d 6811 . . . . . 6 (𝜑 → (𝑏 · 𝑍) = ((𝐼𝑎) · 𝑍))
8685oveq2d 6812 . . . . 5 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
8746, 47, 863eqtr4rd 2816 . . . 4 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))))
8887oveq2d 6812 . . 3 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
8943, 44, 883eqtr4rd 2816 . 2 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = (𝑎 · (𝑋 (𝑌 + 𝑍))))
9036, 89eqtrd 2805 1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4317  {cpr 4319  cfv 6030  (class class class)co 6796  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632  LSSumclsm 18256  Abelcabl 18401  Ringcrg 18755  LModclmod 19073  LSubSpclss 19142  LSpanclspn 19184  LVecclvec 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316
This theorem is referenced by:  baerlem5alem2  37521
  Copyright terms: Public domain W3C validator