![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axun2 | Structured version Visualization version GIF version |
Description: A variant of the Axiom of Union ax-un 7095. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axun2 | ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-un 7095 | . 2 ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | 1 | bm1.3ii 4915 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∀wal 1628 ∃wex 1851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-11 2189 ax-12 2202 ax-13 2407 ax-sep 4912 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1852 df-nf 1857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |