MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgupdim2 Structured version   Visualization version   GIF version

Theorem axtgupdim2 25415
Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points 𝑋, 𝑌 and 𝑍 equidistant to two given two points 𝑈 and 𝑉 must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgupdim2.x (𝜑𝑋𝑃)
axtgupdim2.y (𝜑𝑌𝑃)
axtgupdim2.z (𝜑𝑍𝑃)
axtgupdim2.u (𝜑𝑈𝑃)
axtgupdim2.v (𝜑𝑉𝑃)
axtgupdim2.0 (𝜑𝑈𝑉)
axtgupdim2.1 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
axtgupdim2.2 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
axtgupdim2.3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
axtgupdim2.w (𝜑𝐺𝑉)
axtgupdim2.g (𝜑 → ¬ 𝐺DimTarskiG≥3)
Assertion
Ref Expression
axtgupdim2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2.1 . . . 4 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
2 axtgupdim2.2 . . . 4 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
3 axtgupdim2.3 . . . 4 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
41, 2, 33jca 1261 . . 3 (𝜑 → ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)))
5 axtgupdim2.0 . . . . . . 7 (𝜑𝑈𝑉)
6 axtgupdim2.g . . . . . . . . . . 11 (𝜑 → ¬ 𝐺DimTarskiG≥3)
7 axtgupdim2.w . . . . . . . . . . . . 13 (𝜑𝐺𝑉)
8 axtrkge.p . . . . . . . . . . . . . 14 𝑃 = (Base‘𝐺)
9 axtrkge.d . . . . . . . . . . . . . 14 = (dist‘𝐺)
10 axtrkge.i . . . . . . . . . . . . . 14 𝐼 = (Itv‘𝐺)
118, 9, 10istrkg3ld 25405 . . . . . . . . . . . . 13 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
127, 11syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
1312notbid 307 . . . . . . . . . . 11 (𝜑 → (¬ 𝐺DimTarskiG≥3 ↔ ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
146, 13mpbid 222 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 ralnex2 3074 . . . . . . . . . 10 (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1614, 15sylibr 224 . . . . . . . . 9 (𝜑 → ∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
17 axtgupdim2.u . . . . . . . . . 10 (𝜑𝑈𝑃)
18 axtgupdim2.v . . . . . . . . . 10 (𝜑𝑉𝑃)
19 neeq1 2885 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
20 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑈 → (𝑢 𝑥) = (𝑈 𝑥))
2120eqeq1d 2653 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → ((𝑢 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑣 𝑥)))
22 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑈 → (𝑢 𝑦) = (𝑈 𝑦))
2322eqeq1d 2653 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → ((𝑢 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑣 𝑦)))
24 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑈 → (𝑢 𝑧) = (𝑈 𝑧))
2524eqeq1d 2653 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → ((𝑢 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑣 𝑧)))
2621, 23, 253anbi123d 1439 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧))))
2726anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑈 → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2827rexbidv 3081 . . . . . . . . . . . . . . 15 (𝑢 = 𝑈 → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2928rexbidv 3081 . . . . . . . . . . . . . 14 (𝑢 = 𝑈 → (∃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3029rexbidv 3081 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3119, 30anbi12d 747 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ((𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
3231notbid 307 . . . . . . . . . . 11 (𝑢 = 𝑈 → (¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
33 neeq2 2886 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
34 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑉 → (𝑣 𝑥) = (𝑉 𝑥))
3534eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → ((𝑈 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑉 𝑥)))
36 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑉 → (𝑣 𝑦) = (𝑉 𝑦))
3736eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → ((𝑈 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑉 𝑦)))
38 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑉 → (𝑣 𝑧) = (𝑉 𝑧))
3938eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → ((𝑈 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑉 𝑧)))
4035, 37, 393anbi123d 1439 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
4140anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑉 → ((((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4241rexbidv 3081 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → (∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4342rexbidv 3081 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (∃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4443rexbidv 3081 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4533, 44anbi12d 747 . . . . . . . . . . . 12 (𝑣 = 𝑉 → ((𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4645notbid 307 . . . . . . . . . . 11 (𝑣 = 𝑉 → (¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4732, 46rspc2v 3353 . . . . . . . . . 10 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4817, 18, 47syl2anc 694 . . . . . . . . 9 (𝜑 → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4916, 48mpd 15 . . . . . . . 8 (𝜑 → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
50 imnan 437 . . . . . . . 8 ((𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
5149, 50sylibr 224 . . . . . . 7 (𝜑 → (𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
525, 51mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
53 ralnex3 3075 . . . . . 6 (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
5452, 53sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
55 axtgupdim2.x . . . . . 6 (𝜑𝑋𝑃)
56 axtgupdim2.y . . . . . 6 (𝜑𝑌𝑃)
57 axtgupdim2.z . . . . . 6 (𝜑𝑍𝑃)
58 oveq2 6698 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑈 𝑥) = (𝑈 𝑋))
59 oveq2 6698 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑉 𝑥) = (𝑉 𝑋))
6058, 59eqeq12d 2666 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑈 𝑥) = (𝑉 𝑥) ↔ (𝑈 𝑋) = (𝑉 𝑋)))
61603anbi1d 1443 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
62 oveq1 6697 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
6362eleq2d 2716 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
64 eleq1 2718 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
65 oveq1 6697 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
6665eleq2d 2716 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
6763, 64, 663orbi123d 1438 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6867notbid 307 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6961, 68anbi12d 747 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
7069notbid 307 . . . . . . 7 (𝑥 = 𝑋 → (¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
71 oveq2 6698 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑈 𝑦) = (𝑈 𝑌))
72 oveq2 6698 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑉 𝑦) = (𝑉 𝑌))
7371, 72eqeq12d 2666 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑈 𝑦) = (𝑉 𝑦) ↔ (𝑈 𝑌) = (𝑉 𝑌)))
74733anbi2d 1444 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
75 oveq2 6698 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
7675eleq2d 2716 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
77 oveq2 6698 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
7877eleq2d 2716 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
79 eleq1 2718 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
8076, 78, 793orbi123d 1438 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
8180notbid 307 . . . . . . . . 9 (𝑦 = 𝑌 → (¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
8274, 81anbi12d 747 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
8382notbid 307 . . . . . . 7 (𝑦 = 𝑌 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
84 oveq2 6698 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑈 𝑧) = (𝑈 𝑍))
85 oveq2 6698 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑉 𝑧) = (𝑉 𝑍))
8684, 85eqeq12d 2666 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑈 𝑧) = (𝑉 𝑧) ↔ (𝑈 𝑍) = (𝑉 𝑍)))
87863anbi3d 1445 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍))))
88 eleq1 2718 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
89 oveq1 6697 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
9089eleq2d 2716 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
91 oveq2 6698 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
9291eleq2d 2716 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
9388, 90, 923orbi123d 1438 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9493notbid 307 . . . . . . . . 9 (𝑧 = 𝑍 → (¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9587, 94anbi12d 747 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9695notbid 307 . . . . . . 7 (𝑧 = 𝑍 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9770, 83, 96rspc3v 3356 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9855, 56, 57, 97syl3anc 1366 . . . . 5 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9954, 98mpd 15 . . . 4 (𝜑 → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
100 imnan 437 . . . 4 ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
10199, 100sylibr 224 . . 3 (𝜑 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1024, 101mpd 15 . 2 (𝜑 → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
103102notnotrd 128 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  3c3 11109  Basecbs 15904  distcds 15997  DimTarskiGcstrkgld 25378  Itvcitv 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-trkgld 25396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator