MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Structured version   Visualization version   GIF version

Theorem axrrecex 10168
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 10192. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrrecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10136 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 3048 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 264 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 neeq1 2986 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝐴 ≠ 0))
5 oveq1 6812 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2754 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76rexbidv 3182 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
84, 7imbi12d 333 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)))
9 df-0 10127 . . . . . . 7 0 = ⟨0R, 0R
109eqeq2i 2764 . . . . . 6 (⟨𝑦, 0R⟩ = 0 ↔ ⟨𝑦, 0R⟩ = ⟨0R, 0R⟩)
11 vex 3335 . . . . . . 7 𝑦 ∈ V
1211eqresr 10142 . . . . . 6 (⟨𝑦, 0R⟩ = ⟨0R, 0R⟩ ↔ 𝑦 = 0R)
1310, 12bitri 264 . . . . 5 (⟨𝑦, 0R⟩ = 0 ↔ 𝑦 = 0R)
1413necon3bii 2976 . . . 4 (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝑦 ≠ 0R)
15 recexsr 10112 . . . . . 6 ((𝑦R𝑦 ≠ 0R) → ∃𝑧R (𝑦 ·R 𝑧) = 1R)
1615ex 449 . . . . 5 (𝑦R → (𝑦 ≠ 0R → ∃𝑧R (𝑦 ·R 𝑧) = 1R))
17 opelreal 10135 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1817anbi1i 733 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
19 mulresr 10144 . . . . . . . . . . . 12 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2019eqeq1d 2754 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
21 df-1 10128 . . . . . . . . . . . . 13 1 = ⟨1R, 0R
2221eqeq2i 2764 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
23 ovex 6833 . . . . . . . . . . . . 13 (𝑦 ·R 𝑧) ∈ V
2423eqresr 10142 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
2522, 24bitri 264 . . . . . . . . . . 11 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
2620, 25syl6bb 276 . . . . . . . . . 10 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
2726pm5.32da 676 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
2818, 27syl5bb 272 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
29 oveq2 6813 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3029eqeq1d 2754 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3130rspcev 3441 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)
3228, 31syl6bir 244 . . . . . . 7 (𝑦R → ((𝑧R ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3332expd 451 . . . . . 6 (𝑦R → (𝑧R → ((𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
3433rexlimdv 3160 . . . . 5 (𝑦R → (∃𝑧R (𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3516, 34syld 47 . . . 4 (𝑦R → (𝑦 ≠ 0R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3614, 35syl5bi 232 . . 3 (𝑦R → (⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
373, 8, 36gencl 3367 . 2 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3837imp 444 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wex 1845  wcel 2131  wne 2924  wrex 3043  cop 4319  (class class class)co 6805  Rcnr 9871  0Rc0r 9872  1Rc1r 9873   ·R cmr 9876  cr 10119  0cc0 10120  1c1 10121   · cmul 10125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-omul 7726  df-er 7903  df-ec 7905  df-qs 7909  df-ni 9878  df-pli 9879  df-mi 9880  df-lti 9881  df-plpq 9914  df-mpq 9915  df-ltpq 9916  df-enq 9917  df-nq 9918  df-erq 9919  df-plq 9920  df-mq 9921  df-1nq 9922  df-rq 9923  df-ltnq 9924  df-np 9987  df-1p 9988  df-plp 9989  df-mp 9990  df-ltp 9991  df-enr 10061  df-nr 10062  df-plr 10063  df-mr 10064  df-ltr 10065  df-0r 10066  df-1r 10067  df-m1r 10068  df-c 10126  df-0 10127  df-1 10128  df-r 10130  df-mul 10132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator