Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep5 Structured version   Visualization version   GIF version

Theorem axrep5 4907
 Description: Axiom of Replacement (similar to Axiom Rep of [BellMachover] p. 463). The antecedent tells us 𝜑 is analogous to a "function" from 𝑥 to 𝑦 (although it is not really a function since it is a wff and not a class). In the consequent we postulate the existence of a set 𝑧 that corresponds to the "image" of 𝜑 restricted to some other set 𝑤. The hypothesis says 𝑧 must not be free in 𝜑. (Contributed by NM, 26-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
axrep5.1 𝑧𝜑
Assertion
Ref Expression
axrep5 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem axrep5
StepHypRef Expression
1 19.37v 2077 . . . . 5 (∃𝑧(𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)) ↔ (𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)))
2 impexp 437 . . . . . . . 8 (((𝑥𝑤𝜑) → 𝑦 = 𝑧) ↔ (𝑥𝑤 → (𝜑𝑦 = 𝑧)))
32albii 1894 . . . . . . 7 (∀𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧) ↔ ∀𝑦(𝑥𝑤 → (𝜑𝑦 = 𝑧)))
4 19.21v 2019 . . . . . . 7 (∀𝑦(𝑥𝑤 → (𝜑𝑦 = 𝑧)) ↔ (𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)))
53, 4bitr2i 265 . . . . . 6 ((𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)) ↔ ∀𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
65exbii 1923 . . . . 5 (∃𝑧(𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)) ↔ ∃𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
71, 6bitr3i 266 . . . 4 ((𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) ↔ ∃𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
87albii 1894 . . 3 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) ↔ ∀𝑥𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
9 nfv 1994 . . . . 5 𝑧 𝑥𝑤
10 axrep5.1 . . . . 5 𝑧𝜑
119, 10nfan 1979 . . . 4 𝑧(𝑥𝑤𝜑)
1211axrep4 4906 . . 3 (∀𝑥𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))))
138, 12sylbi 207 . 2 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))))
14 anabs5 634 . . . . . 6 ((𝑥𝑤 ∧ (𝑥𝑤𝜑)) ↔ (𝑥𝑤𝜑))
1514exbii 1923 . . . . 5 (∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑)) ↔ ∃𝑥(𝑥𝑤𝜑))
1615bibi2i 326 . . . 4 ((𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))) ↔ (𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1716albii 1894 . . 3 (∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1817exbii 1923 . 2 (∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1913, 18sylib 208 1 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382  ∀wal 1628  ∃wex 1851  Ⅎwnf 1855 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-rep 4902 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857 This theorem is referenced by:  zfrepclf  4908  axsep  4911
 Copyright terms: Public domain W3C validator