MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep3 Structured version   Visualization version   GIF version

Theorem axrep3 4739
Description: Axiom of Replacement slightly strengthened from axrep2 4738; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.)
Assertion
Ref Expression
axrep3 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem axrep3
StepHypRef Expression
1 nfe1 2029 . . . 4 𝑦𝑦𝑧(𝜑𝑧 = 𝑦)
2 nfv 1845 . . . . . 6 𝑦 𝑧𝑥
3 nfv 1845 . . . . . . . 8 𝑦 𝑥𝑤
4 nfa1 2030 . . . . . . . 8 𝑦𝑦𝜑
53, 4nfan 1830 . . . . . . 7 𝑦(𝑥𝑤 ∧ ∀𝑦𝜑)
65nfex 2156 . . . . . 6 𝑦𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)
72, 6nfbi 1835 . . . . 5 𝑦(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
87nfal 2155 . . . 4 𝑦𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
91, 8nfim 1827 . . 3 𝑦(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
109nfex 2156 . 2 𝑦𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
11 elequ2 2006 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
1211anbi1d 740 . . . . . . 7 (𝑦 = 𝑤 → ((𝑥𝑦 ∧ ∀𝑦𝜑) ↔ (𝑥𝑤 ∧ ∀𝑦𝜑)))
1312exbidv 1852 . . . . . 6 (𝑦 = 𝑤 → (∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
1413bibi2d 332 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))))
1514albidv 1851 . . . 4 (𝑦 = 𝑤 → (∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))))
1615imbi2d 330 . . 3 (𝑦 = 𝑤 → ((∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))))
1716exbidv 1852 . 2 (𝑦 = 𝑤 → (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))))
18 axrep2 4738 . 2 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)))
1910, 17, 18chvar 2266 1 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-rep 4736
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707
This theorem is referenced by:  axrep4  4740
  Copyright terms: Public domain W3C validator