MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregnd Structured version   Visualization version   GIF version

Theorem axregnd 9638
Description: A version of the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Wolf Lammen, 18-Aug-2019.)
Assertion
Ref Expression
axregnd (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))

Proof of Theorem axregnd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axregndlem2 9637 . . . 4 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑤(𝑤𝑥 → ¬ 𝑤𝑦)))
2 nfnae 2460 . . . . . 6 𝑥 ¬ ∀𝑧 𝑧 = 𝑥
3 nfnae 2460 . . . . . 6 𝑥 ¬ ∀𝑧 𝑧 = 𝑦
42, 3nfan 1977 . . . . 5 𝑥(¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
5 nfnae 2460 . . . . . . . 8 𝑧 ¬ ∀𝑧 𝑧 = 𝑥
6 nfnae 2460 . . . . . . . 8 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
75, 6nfan 1977 . . . . . . 7 𝑧(¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
8 nfcvf 2926 . . . . . . . . . 10 (¬ ∀𝑧 𝑧 = 𝑥𝑧𝑥)
98nfcrd 2909 . . . . . . . . 9 (¬ ∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑤𝑥)
109adantr 472 . . . . . . . 8 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤𝑥)
11 nfcvf 2926 . . . . . . . . . . 11 (¬ ∀𝑧 𝑧 = 𝑦𝑧𝑦)
1211nfcrd 2909 . . . . . . . . . 10 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑤𝑦)
1312nfnd 1934 . . . . . . . . 9 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 ¬ 𝑤𝑦)
1413adantl 473 . . . . . . . 8 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 ¬ 𝑤𝑦)
1510, 14nfimd 1972 . . . . . . 7 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧(𝑤𝑥 → ¬ 𝑤𝑦))
16 elequ1 2146 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
17 elequ1 2146 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑦𝑧𝑦))
1817notbid 307 . . . . . . . . 9 (𝑤 = 𝑧 → (¬ 𝑤𝑦 ↔ ¬ 𝑧𝑦))
1916, 18imbi12d 333 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑥 → ¬ 𝑤𝑦) ↔ (𝑧𝑥 → ¬ 𝑧𝑦)))
2019a1i 11 . . . . . . 7 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑤 = 𝑧 → ((𝑤𝑥 → ¬ 𝑤𝑦) ↔ (𝑧𝑥 → ¬ 𝑧𝑦))))
217, 15, 20cbvald 2422 . . . . . 6 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑤(𝑤𝑥 → ¬ 𝑤𝑦) ↔ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
2221anbi2d 742 . . . . 5 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ((𝑥𝑦 ∧ ∀𝑤(𝑤𝑥 → ¬ 𝑤𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
234, 22exbid 2238 . . . 4 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∃𝑥(𝑥𝑦 ∧ ∀𝑤(𝑤𝑥 → ¬ 𝑤𝑦)) ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
241, 23syl5ib 234 . . 3 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
2524ex 449 . 2 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
26 axregndlem1 9636 . . 3 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
2726aecoms 2454 . 2 (∀𝑧 𝑧 = 𝑥 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
28 19.8a 2199 . . 3 (𝑥𝑦 → ∃𝑥 𝑥𝑦)
29 nfae 2458 . . . 4 𝑥𝑧 𝑧 = 𝑦
30 elirrv 8668 . . . . . . . . 9 ¬ 𝑧𝑧
31 elequ2 2153 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝑧𝑧𝑦))
3230, 31mtbii 315 . . . . . . . 8 (𝑧 = 𝑦 → ¬ 𝑧𝑦)
3332a1d 25 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑥 → ¬ 𝑧𝑦))
3433alimi 1888 . . . . . 6 (∀𝑧 𝑧 = 𝑦 → ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))
3534anim2i 594 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧 𝑧 = 𝑦) → (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
3635expcom 450 . . . 4 (∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3729, 36eximd 2232 . . 3 (∀𝑧 𝑧 = 𝑦 → (∃𝑥 𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3828, 37syl5 34 . 2 (∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3925, 27, 38pm2.61ii 177 1 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1630  wex 1853  wnf 1857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-reg 8664
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-v 3342  df-dif 3718  df-un 3720  df-nul 4059  df-sn 4322  df-pr 4324
This theorem is referenced by:  zfcndreg  9651  axregprim  31910
  Copyright terms: Public domain W3C validator