MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axreg2 Structured version   Visualization version   GIF version

Theorem axreg2 8458
Description: Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
axreg2 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axreg2
StepHypRef Expression
1 ax-reg 8457 . 2 (∃𝑥 𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
2119.23bi 2059 1 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044  ax-reg 8457
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by:  zfregcl  8459  zfregclOLD  8461  axregndlem2  9385
  Copyright terms: Public domain W3C validator