MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpr Structured version   Visualization version   GIF version

Theorem axpr 4871
Description: Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr 4872 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)

Assertion
Ref Expression
axpr 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤

Proof of Theorem axpr
StepHypRef Expression
1 zfpair 4870 . . 3 {𝑥, 𝑦} ∈ V
21isseti 3200 . 2 𝑧 𝑧 = {𝑥, 𝑦}
3 dfcleq 2620 . . 3 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
4 vex 3194 . . . . . . 7 𝑤 ∈ V
54elpr 4174 . . . . . 6 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
65bibi2i 327 . . . . 5 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
7 biimpr 210 . . . . 5 ((𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)) → ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
86, 7sylbi 207 . . . 4 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) → ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
98alimi 1736 . . 3 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) → ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
103, 9sylbi 207 . 2 (𝑧 = {𝑥, 𝑦} → ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
112, 10eximii 1761 1 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wal 1478   = wceq 1480  wex 1701  wcel 1992  {cpr 4155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-pw 4137  df-sn 4154  df-pr 4156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator