Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem4 Structured version   Visualization version   GIF version

Theorem axpowndlem4 9623
 Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
axpowndlem4 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))

Proof of Theorem axpowndlem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axpowndlem3 9622 . . . . 5 𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
21ax-gen 1869 . . . 4 𝑤𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
3 nfnae 2469 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 nfnae 2469 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑧
53, 4nfan 1979 . . . . 5 𝑦(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
6 nfcvf 2936 . . . . . . . . 9 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
76adantr 466 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑥)
8 nfcvd 2913 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑤)
97, 8nfeqd 2920 . . . . . . 7 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥 = 𝑤)
109nfnd 1935 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 ¬ 𝑥 = 𝑤)
11 nfnae 2469 . . . . . . . 8 𝑥 ¬ ∀𝑦 𝑦 = 𝑥
12 nfnae 2469 . . . . . . . 8 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
1311, 12nfan 1979 . . . . . . 7 𝑥(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
14 nfv 1994 . . . . . . . 8 𝑤(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
15 nfnae 2469 . . . . . . . . . . . . 13 𝑧 ¬ ∀𝑦 𝑦 = 𝑥
16 nfnae 2469 . . . . . . . . . . . . 13 𝑧 ¬ ∀𝑦 𝑦 = 𝑧
1715, 16nfan 1979 . . . . . . . . . . . 12 𝑧(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
187, 8nfeld 2921 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥𝑤)
1917, 18nfexd 2328 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑧 𝑥𝑤)
20 nfcvf 2936 . . . . . . . . . . . . . 14 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
2120adantl 467 . . . . . . . . . . . . 13 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑧)
227, 21nfeld 2921 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥𝑧)
2314, 22nfald 2326 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑤 𝑥𝑧)
2419, 23nfimd 1972 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧))
2513, 24nfald 2326 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧))
268, 7nfeld 2921 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑤𝑥)
2725, 26nfimd 1972 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
2814, 27nfald 2326 . . . . . . 7 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
2913, 28nfexd 2328 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
3010, 29nfimd 1972 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)))
31 equequ2 2110 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
3231notbid 307 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦))
3332adantl 467 . . . . . . 7 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦))
34 nfcvd 2913 . . . . . . . . . . . . . . 15 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑥𝑤)
35 nfcvf2 2937 . . . . . . . . . . . . . . . 16 (¬ ∀𝑦 𝑦 = 𝑥𝑥𝑦)
3635adantr 466 . . . . . . . . . . . . . . 15 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑥𝑦)
3734, 36nfeqd 2920 . . . . . . . . . . . . . 14 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑥 𝑤 = 𝑦)
3813, 37nfan1 2221 . . . . . . . . . . . . 13 𝑥((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦)
39 nfcvd 2913 . . . . . . . . . . . . . . . . 17 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑤)
40 nfcvf2 2937 . . . . . . . . . . . . . . . . . 18 (¬ ∀𝑦 𝑦 = 𝑧𝑧𝑦)
4140adantl 467 . . . . . . . . . . . . . . . . 17 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑦)
4239, 41nfeqd 2920 . . . . . . . . . . . . . . . 16 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑦)
4317, 42nfan1 2221 . . . . . . . . . . . . . . 15 𝑧((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦)
44 elequ2 2158 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
4544adantl 467 . . . . . . . . . . . . . . 15 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (𝑥𝑤𝑥𝑦))
4643, 45exbid 2246 . . . . . . . . . . . . . 14 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∃𝑧 𝑥𝑤 ↔ ∃𝑧 𝑥𝑦))
47 biidd 252 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (𝑥𝑧𝑥𝑧))
4847a1i 11 . . . . . . . . . . . . . . . 16 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → (𝑥𝑧𝑥𝑧)))
495, 22, 48cbvald 2435 . . . . . . . . . . . . . . 15 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤 𝑥𝑧 ↔ ∀𝑦 𝑥𝑧))
5049adantr 466 . . . . . . . . . . . . . 14 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∀𝑤 𝑥𝑧 ↔ ∀𝑦 𝑥𝑧))
5146, 50imbi12d 333 . . . . . . . . . . . . 13 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) ↔ (∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
5238, 51albid 2245 . . . . . . . . . . . 12 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) ↔ ∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
53 elequ1 2151 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
5453adantl 467 . . . . . . . . . . . 12 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (𝑤𝑥𝑦𝑥))
5552, 54imbi12d 333 . . . . . . . . . . 11 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5655ex 397 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → ((∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
575, 27, 56cbvald 2435 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ ∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5813, 57exbid 2246 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5958adantr 466 . . . . . . 7 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
6033, 59imbi12d 333 . . . . . 6 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((¬ 𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)) ↔ (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
6160ex 397 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → ((¬ 𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)) ↔ (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))))
625, 30, 61cbvald 2435 . . . 4 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)) ↔ ∀𝑦𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
632, 62mpbii 223 . . 3 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∀𝑦𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
646319.21bi 2212 . 2 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
6564ex 397 1 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382  ∀wal 1628  ∃wex 1851  Ⅎwnfc 2899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-reg 8652 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-pw 4297  df-sn 4315  df-pr 4317 This theorem is referenced by:  axpownd  9624
 Copyright terms: Public domain W3C validator