![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axnulALT | Structured version Visualization version GIF version |
Description: Alternate proof of axnul 4922, proved from propositional calculus, ax-gen 1870, ax-4 1885, sp 2207, and ax-rep 4904. To check this, replace sp 2207 with the obsolete axiom ax-c5 34691 in the proof of axnulALT 4921 and type the Metamath command 'SHOW TRACEBACK axnulALT / AXIOMS'. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axnulALT | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rep 4904 | . . 3 ⊢ (∀𝑤∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) | |
2 | sp 2207 | . . . . . 6 ⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) | |
3 | 2 | con2i 136 | . . . . 5 ⊢ (∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) |
4 | df-ex 1853 | . . . . 5 ⊢ (∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) | |
5 | 3, 4 | sylibr 224 | . . . 4 ⊢ (∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) |
6 | fal 1638 | . . . . . 6 ⊢ ¬ ⊥ | |
7 | sp 2207 | . . . . . 6 ⊢ (∀𝑥⊥ → ⊥) | |
8 | 6, 7 | mto 188 | . . . . 5 ⊢ ¬ ∀𝑥⊥ |
9 | 8 | pm2.21i 117 | . . . 4 ⊢ (∀𝑥⊥ → 𝑦 = 𝑥) |
10 | 5, 9 | mpg 1872 | . . 3 ⊢ ∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) |
11 | 1, 10 | mpg 1872 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥)) |
12 | 8 | intnan 474 | . . . . . 6 ⊢ ¬ (𝑤 ∈ 𝑧 ∧ ∀𝑥⊥) |
13 | 12 | nex 1879 | . . . . 5 ⊢ ¬ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥) |
14 | 13 | nbn 361 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) |
15 | 14 | albii 1895 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) |
16 | 15 | exbii 1924 | . 2 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) |
17 | 11, 16 | mpbir 221 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 = wceq 1631 ⊥wfal 1636 ∃wex 1852 ∈ wcel 2145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 ax-rep 4904 |
This theorem depends on definitions: df-bi 197 df-an 383 df-tru 1634 df-fal 1637 df-ex 1853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |