![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 10223 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
axlttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-lttri 10223 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | |
2 | ltxrlt 10321 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | |
3 | ltxrlt 10321 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
4 | 3 | ancoms 468 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 <ℝ 𝐴)) |
5 | 4 | orbi2d 740 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
6 | 5 | notbid 307 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
7 | 1, 2, 6 | 3bitr4d 300 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ℝcr 10148 <ℝ cltrr 10153 < clt 10287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-pre-lttri 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 |
This theorem is referenced by: ltso 10331 leloe 10337 ltnsym 10348 ltadd2 10354 lttrid 10388 ltord1 10767 recgt0 11080 recgt0ii 11142 arch 11502 xrlttri 12186 subgmulg 17830 cosord 24499 logdivlt 24588 digexp 42930 |
Copyright terms: Public domain | W3C validator |