Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem9 Structured version   Visualization version   GIF version

Theorem axlowdimlem9 26029
 Description: Lemma for axlowdim 26040. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem9 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)

Proof of Theorem axlowdimlem9
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6353 . 2 (𝑃𝐾) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾)
3 eldifsn 4462 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3))
4 disjdif 4184 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
5 3re 11286 . . . . . . . 8 3 ∈ ℝ
65elexi 3353 . . . . . . 7 3 ∈ V
7 negex 10471 . . . . . . 7 -1 ∈ V
86, 7fnsn 6107 . . . . . 6 {⟨3, -1⟩} Fn {3}
9 c0ex 10226 . . . . . . . 8 0 ∈ V
109fconst 6252 . . . . . . 7 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
11 ffn 6206 . . . . . . 7 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
1210, 11ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
13 fvun2 6432 . . . . . 6 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
148, 12, 13mp3an12 1563 . . . . 5 ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
154, 14mpan 708 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
169fvconst2 6633 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0)
1715, 16eqtrd 2794 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
183, 17sylbir 225 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
192, 18syl5eq 2806 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ∖ cdif 3712   ∪ cun 3713   ∩ cin 3714  ∅c0 4058  {csn 4321  ⟨cop 4327   × cxp 5264   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ℝcr 10127  0cc0 10128  1c1 10129  -cneg 10459  3c3 11263  ...cfz 12519 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-i2m1 10196  ax-1ne0 10197  ax-rrecex 10200  ax-cnre 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6816  df-neg 10461  df-2 11271  df-3 11272 This theorem is referenced by:  axlowdimlem16  26036  axlowdimlem17  26037
 Copyright terms: Public domain W3C validator