Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem17 Structured version   Visualization version   GIF version

Theorem axlowdimlem17 26037
 Description: Lemma for axlowdim 26040. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem17.3 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem17.4 𝑋 ∈ ℝ
axlowdimlem17.5 𝑌 ∈ ℝ
Assertion
Ref Expression
axlowdimlem17 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)

Proof of Theorem axlowdimlem17
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 11922 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
21ad2antrr 764 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑁 ∈ (ℤ‘2))
3 fzss2 12574 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (1...2) ⊆ (1...𝑁))
42, 3syl 17 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (1...2) ⊆ (1...𝑁))
5 simpr 479 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...2))
64, 5sseldd 3745 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...𝑁))
7 fznuz 12615 . . . . . . . . . . 11 (𝑖 ∈ (1...2) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
87adantl 473 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
9 3z 11602 . . . . . . . . . . . . . 14 3 ∈ ℤ
10 uzid 11894 . . . . . . . . . . . . . 14 (3 ∈ ℤ → 3 ∈ (ℤ‘3))
119, 10ax-mp 5 . . . . . . . . . . . . 13 3 ∈ (ℤ‘3)
12 df-3 11272 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312fveq2i 6355 . . . . . . . . . . . . 13 (ℤ‘3) = (ℤ‘(2 + 1))
1411, 13eleqtri 2837 . . . . . . . . . . . 12 3 ∈ (ℤ‘(2 + 1))
15 eleq1 2827 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 ∈ (ℤ‘(2 + 1)) ↔ 3 ∈ (ℤ‘(2 + 1))))
1614, 15mpbiri 248 . . . . . . . . . . 11 (𝑖 = 3 → 𝑖 ∈ (ℤ‘(2 + 1)))
1716necon3bi 2958 . . . . . . . . . 10 𝑖 ∈ (ℤ‘(2 + 1)) → 𝑖 ≠ 3)
188, 17syl 17 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ 3)
19 axlowdimlem16.1 . . . . . . . . . 10 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2019axlowdimlem9 26029 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃𝑖) = 0)
216, 18, 20syl2anc 696 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = 0)
22 elfzuz 12531 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (ℤ‘2))
2322ad2antlr 765 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝐼 ∈ (ℤ‘2))
24 eluzp1p1 11905 . . . . . . . . . . . . 13 (𝐼 ∈ (ℤ‘2) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
26 uzss 11900 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2725, 26syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2827, 8ssneldd 3747 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)))
29 eluzelz 11889 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (𝐼 + 1) ∈ ℤ)
3025, 29syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ ℤ)
31 uzid 11894 . . . . . . . . . . . . 13 ((𝐼 + 1) ∈ ℤ → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
33 eleq1 2827 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → (𝑖 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1))))
3432, 33syl5ibrcom 237 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑖 = (𝐼 + 1) → 𝑖 ∈ (ℤ‘(𝐼 + 1))))
3534necon3bd 2946 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)) → 𝑖 ≠ (𝐼 + 1)))
3628, 35mpd 15 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ (𝐼 + 1))
37 axlowdimlem16.2 . . . . . . . . . 10 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
3837axlowdimlem12 26032 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄𝑖) = 0)
396, 36, 38syl2anc 696 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑄𝑖) = 0)
4021, 39eqtr4d 2797 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = (𝑄𝑖))
4140oveq1d 6828 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − (𝐴𝑖)))
4241oveq1d 6828 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = (((𝑄𝑖) − (𝐴𝑖))↑2))
4342sumeq2dv 14632 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2))
4419, 37axlowdimlem16 26036 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
45 axlowdimlem17.3 . . . . . . . . . . . . 13 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
4645fveq1i 6353 . . . . . . . . . . . 12 (𝐴𝑖) = (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖)
47 axlowdimlem2 26022 . . . . . . . . . . . . 13 ((1...2) ∩ (3...𝑁)) = ∅
48 axlowdimlem17.4 . . . . . . . . . . . . . . . 16 𝑋 ∈ ℝ
49 axlowdimlem17.5 . . . . . . . . . . . . . . . 16 𝑌 ∈ ℝ
5048, 49axlowdimlem4 26024 . . . . . . . . . . . . . . 15 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ
51 ffn 6206 . . . . . . . . . . . . . . 15 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2))
5250, 51ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2)
53 axlowdimlem1 26021 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
54 ffn 6206 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
56 fvun2 6432 . . . . . . . . . . . . . 14 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁))) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5752, 55, 56mp3an12 1563 . . . . . . . . . . . . 13 ((((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁)) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5847, 57mpan 708 . . . . . . . . . . . 12 (𝑖 ∈ (3...𝑁) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5946, 58syl5eq 2806 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = (((3...𝑁) × {0})‘𝑖))
60 c0ex 10226 . . . . . . . . . . . 12 0 ∈ V
6160fvconst2 6633 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (((3...𝑁) × {0})‘𝑖) = 0)
6259, 61eqtrd 2794 . . . . . . . . . 10 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = 0)
6362adantl 473 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝐴𝑖) = 0)
6463oveq2d 6829 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑃𝑖) − 0))
6519axlowdimlem7 26027 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
6665ad2antrr 764 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
67 3nn 11378 . . . . . . . . . . . . . 14 3 ∈ ℕ
68 nnuz 11916 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
6967, 68eleqtri 2837 . . . . . . . . . . . . 13 3 ∈ (ℤ‘1)
70 fzss1 12573 . . . . . . . . . . . . 13 (3 ∈ (ℤ‘1) → (3...𝑁) ⊆ (1...𝑁))
7169, 70ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) ⊆ (1...𝑁)
7271sseli 3740 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁))
7372adantl 473 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁))
74 fveecn 25981 . . . . . . . . . 10 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
7566, 73, 74syl2anc 696 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃𝑖) ∈ ℂ)
7675subid1d 10573 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − 0) = (𝑃𝑖))
7764, 76eqtrd 2794 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = (𝑃𝑖))
7877oveq1d 6828 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = ((𝑃𝑖)↑2))
7978sumeq2dv 14632 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2))
8063oveq2d 6829 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − 0))
81 eluzge3nn 11923 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
82 2eluzge1 11927 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
83 fzss1 12573 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
8482, 83ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
8584sseli 3740 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1)))
8637axlowdimlem10 26030 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
8781, 85, 86syl2an 495 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
88 fveecn 25981 . . . . . . . . . 10 ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
8987, 72, 88syl2an 495 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄𝑖) ∈ ℂ)
9089subid1d 10573 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − 0) = (𝑄𝑖))
9180, 90eqtrd 2794 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = (𝑄𝑖))
9291oveq1d 6828 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) = ((𝑄𝑖)↑2))
9392sumeq2dv 14632 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
9444, 79, 933eqtr4d 2804 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
9543, 94oveq12d 6831 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
9647a1i 11 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((1...2) ∩ (3...𝑁)) = ∅)
97 eluzelre 11890 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
98 eluzle 11892 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
99 2re 11282 . . . . . . . . . . . 12 2 ∈ ℝ
100 3re 11286 . . . . . . . . . . . 12 3 ∈ ℝ
101 2lt3 11387 . . . . . . . . . . . 12 2 < 3
10299, 100, 101ltleii 10352 . . . . . . . . . . 11 2 ≤ 3
103 letr 10323 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
10499, 100, 103mp3an12 1563 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
105102, 104mpani 714 . . . . . . . . . 10 (𝑁 ∈ ℝ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
10697, 98, 105sylc 65 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 2 ≤ 𝑁)
107 1le2 11433 . . . . . . . . 9 1 ≤ 2
108106, 107jctil 561 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
109108adantr 472 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
110 eluzelz 11889 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
111110adantr 472 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
112 2z 11601 . . . . . . . . 9 2 ∈ ℤ
113 1z 11599 . . . . . . . . 9 1 ∈ ℤ
114 elfz 12525 . . . . . . . . 9 ((2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
115112, 113, 114mp3an12 1563 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
116111, 115syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
117109, 116mpbird 247 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁))
118 fzsplit 12560 . . . . . 6 (2 ∈ (1...𝑁) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
119117, 118syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
12012oveq1i 6823 . . . . . 6 (3...𝑁) = ((2 + 1)...𝑁)
121120uneq2i 3907 . . . . 5 ((1...2) ∪ (3...𝑁)) = ((1...2) ∪ ((2 + 1)...𝑁))
122119, 121syl6eqr 2812 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
123 fzfid 12966 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) ∈ Fin)
12465ad2antrr 764 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
125124, 74sylancom 704 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
12648, 49axlowdimlem5 26025 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
12745, 126syl5eqel 2843 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝐴 ∈ (𝔼‘𝑁))
1281, 127syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝐴 ∈ (𝔼‘𝑁))
129128ad2antrr 764 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
130 fveecn 25981 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
131129, 130sylancom 704 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
132125, 131subcld 10584 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) ∈ ℂ)
133132sqcld 13200 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13496, 122, 123, 133fsumsplit 14670 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)))
13587, 88sylan 489 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
136135, 131subcld 10584 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) ∈ ℂ)
137136sqcld 13200 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13896, 122, 123, 137fsumsplit 14670 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
13995, 134, 1383eqtr4d 2804 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
14065adantr 472 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑃 ∈ (𝔼‘𝑁))
141128adantr 472 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐴 ∈ (𝔼‘𝑁))
142 brcgr 25979 . . 3 (((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
143140, 141, 87, 141, 142syl22anc 1478 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
144139, 143mpbird 247 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ∖ cdif 3712   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  {csn 4321  {cpr 4323  ⟨cop 4327   class class class wbr 4804   × cxp 5264   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131   ≤ cle 10267   − cmin 10458  -cneg 10459  ℕcn 11212  2c2 11262  3c3 11263  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519  ↑cexp 13054  Σcsu 14615  𝔼cee 25967  Cgrccgr 25969 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-ee 25970  df-cgr 25972 This theorem is referenced by:  axlowdim  26040
 Copyright terms: Public domain W3C validator